
Educado
An educational mobile application for Brazillian waste pickers

Authors
Beniamin Lobodziec

Hijab Nasir
Jonathan Eis Benzon

Karl-Emil Hertz
Lojain Ajek

Nicolai Uhre Mandrup
Tommy Grenaae

Aalborg University
Electronics and IT

Department of Computer Science
Aalborg University

http://www.aau.dk

Title:
Educado - An educational mobile ap-
plication for Brazillian waste pickers

Theme:
Complex Front-end Developing

Project period:
5. SEMESTER

Project group:
Group 3

Group member:
Beniamin Lobodziec
Hijab Nasir
Jonathan Eis Benzon
Karl-Emil Hertz
Lojain Ajek
Nicolai Uhre Mandrup
Tommy Grenaae

Supervisor:
Andres R. Masegosa

Number of pages: 69

Due date:
January 6, 2023

Abstract:

This report covers the process of a 5th-semester Software Engineer-
ing Bachelor group working on a large-scale project in collabora-
tion with other groups of the same semester. The report focuses
on documenting how further development on the front-end of the
educational app Educado evolved throughout the semester with the
use of agile software development techniques. The report consists
of six parts, where each increment builds on top of the previous
one. The main focus of these increments was the process of how
the different teams collaborated to develop the same product. The
initial starting point of this product was developed by two Bach-
elor students during their Bachelor project. During this semester,
20 students took over and have been working on different aspects
of the Educado product. The goal for this project is to have stu-
dents develop the first iteration which can then be an open-source
project that future students will be able to take over. We used field
research from the 2019 Smart Caching Learning Materials done by
the same students who made the initial product. The increments of
the front-end implementations creates a new foundation for future
development.

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement with the author.

http://www.aau.dk

Preface

Credits:

We would like to thank our supervisor Andres R. Masegosa for helping us create a clearer path towards the
end goal of the project, and for being able to supervise with little to no agenda from the group.

Another mention also goes out to our semester coordinator Daniel Russo, who participated in sprint
reviews throughout the project of his own free will, for us to learn how to improve in our process.

Furthermore, we would like to thank Jacob Vejlin Jensen and Daniel Britze who made the initial
product, and acted as stakeholders during the project.

Finally, a big thanks go to Mateus Halbe Torres, who acted as Product Owner for the development of
the Educado-project.

Resources:

The GitLab repository: https://gitlab.com/A-tech/educado-mobile-application
Currently the repository is closed, but the plan is to open it up.
Contact Daniel Britze at daniel@somethingnew.dk if you need help with access.

https://gitlab.com/A-tech/educado-mobile-application
mailto:daniel@somethingnew.dk

Contents

I Introduction 1

1 Background 2
1.1 Important concepts . 2
1.2 Rich Picture . 3
1.3 Initial state of the Educado project . 4
1.4 Class Diagram of the Data Model . 7

2 Prerequisites 9
2.1 Limitations . 9
2.2 Gamification . 11
2.3 Reading2Learn (R2L) . 12

II Sprints 13

3 Introduction to sprints 14
3.1 Combined User Stories Diagram . 14
3.2 Definition of Done . 15

4 System Architecture 16
4.1 General overview . 16
4.2 Mobile app overview . 17
4.3 Back-end overview . 18

5 Sprint #1 19
5.1 User Stories . 19
5.2 Sprint management . 19
5.3 Cross-team coordination . 19
5.4 Design & Implementation . 20
5.5 Sprint Review . 22
5.6 Sprint Retrospective . 22

6 Sprint #2 23
6.1 User Stories . 23
6.2 Sprint management . 23
6.3 Cross-team coordination . 24
6.4 Design & Implementation . 24
6.5 Sprint Review . 27
6.6 Sprint Retrospective . 27

7 Sprint #3 29
7.1 User Stories . 29
7.2 Sprint management . 29

7.3 Cross-team coordination . 29
7.4 Design & Implementation . 30
7.5 Sprint Review . 31
7.6 Sprint Retrospective . 31

8 Sprint #4 32
8.1 User Stories . 32
8.2 Sprint management . 32
8.3 Cross-team coordination . 32
8.4 Design & Implementation . 32
8.5 Sprint Review . 35
8.6 Sprint Retrospective . 36

9 Sprint #5 38
9.1 User Stories . 38
9.2 Sprint management . 38
9.3 Cross-team coordination . 38
9.4 Design & Implementation . 38
9.5 Sprint Review . 40
9.6 Sprint Retrospective . 41

10 Sprint #6 43
10.1 User Stories . 43
10.2 Sprint management . 43
10.3 Cross-team coordination . 43
10.4 Design & Implementation . 44
10.5 Sprint Review . 46
10.6 Sprint Retrospective . 46

III Testing & Evaluation 49

11 Testing 50
11.1 Software Quality Management . 50
11.2 Usability testing . 53
11.3 Snapshot testing . 55

12 Discussion 57
12.1 Future development . 57

13 Conclusion 62

IV Appendix 65

A Testing 66
A.1 Snapshot Code snippets . 66

Part I

Introduction

1

1 | Background
Written in collaboration with all groups

One of the world’s largest landfills lies in Brazil [1]. The landfill was closed in 2018 which is a positive
development in regard to the current climate crisis and the general health of the people working and living
in or near the landfill [2].
When the landfill was closed, the waste pickers who lived and worked there were instead provided with jobs
at the newly created recycling centres to sort the waste. This has led to a lower income for the waste pickers
in general, even though they were hired at the recycling facilities. Furthermore, the payment went from a
daily to a weekly salary, which meant that the waste pickers had a harder time managing the money that
was available to them. The waster pickers do not have many other options of employment, as many of them
do not have any education, which could lead them to other more profitable jobs [3, p. 3].

This problem identification has led to the creation of the Educado project, a digital learning platform for
waste pickers in Brazil. It began in 2019 when students at Aalborg University collaborated with students at
the University of Brasilia to create a mobile application that can be used to educate waste pickers.
In order to complete this, an application was created that apart from providing basic education also gives
certifications for completed courses. This is meant to help these people improve their standards of living.
The application should be intuitive and contain audio and video clips instead of text when possible, to make
it more available for people who are illiterate.
A web application was also created, allowing ’Content Creators’ to build, modify and publish courses all
from a web browser [4].

This semester, three groups at Aalborg University are collaborating to continue this project and its vi-
sion. The project’s goal is to clean up and refactor the existing code and database, as well as redesign the
mobile- and web applications and add new functionality. As we are working on a shared project some
sections in the report have also been written in collaboration between two or more groups. These sections’
beginning and end will be clearly marked throughout the report.

1.1 Important concepts
Throughout the report, there will be used terminology from Scrum and agile software development, so it
would come to good use if the reader has a basic knowledge of the different kinds of software development
methods. In this project, we are working as members of a development team following (while learning)
Agile practices. This section briefly describes key concepts of the Agile framework called Scrum that we are
meant to work within. For in-depth explanations of these concepts, explore original resources on "The Agile
Manifesto" [5] and Scrum [6].

General Concepts
The following concepts are general for Scrum.

• The Product Backlog is a list of all the items or work that needs to be done to achieve the desired state
of the product.

• A Sprint Backlog is a subset of the Product Backlog containing the work required to fulfil a sprint’s
goal.

• An Increment represents the finished valuable work the Developers have completed during a sprint.

• A Definition of Done formally defines a baseline for the state of quality an Increment is required to
fulfil for the product. It is about the activities needed to ensure a certain level of quality of the work
being done on the backlog items before they can be considered an Increment.

2

Background

• The User Story is not described in the Scrum Glossary because it is not a mandatory part of Scrum
[7]. However, it is perfectly compatible with Scrum, the user story aims to express requirements from
a user’s perspective. It is what the user needs from the system. In Scrum, it is the PO’s responsibility
to relay this information to the developers [8]. In this project, we, the developers, have made the user
stories based on our understanding of the system and then confirmed them in meetings with the PO.

• The concept of Scaling becomes relevant when a developer team or software product grows in size
and complexity, possibly becoming unmanageable. A scaling framework attempts to set up the rules
or structure for managing these challenges. One such framework, Nexus [9], minimally builds upon
Scrum to enable three to nine teams to work together on a single product.

Roles in Scrum
Key people and their roles in Scrum are listed below:

• The Scrum Master is the head of the Scrum team. First, among his peers of developers, he is respon-
sible for the effectiveness of the team.

• The Product Owner (PO) ensures that the team produces a valuable product by being the link between
developers and stakeholders.

• The Developers are the members of the scrum team creating the product.

• A Scrum Team consists of a Scrum Master, a PO, and the Developers.

• The Stakeholders are people outside of the scrum team, who have knowledge of or an interest in the
product. They are represented by the PO and should play an active role at Sprint Review.

Events in Scrum
Defining activities in Scrum that have been central to this project:

• The Sprint is a time-restricted period during which all the other events take place.

• Sprint Planning marks the start of a sprint, where the scrum team chooses from the Product Backlog
which task is the most valuable to work on during the coming sprint.

• Daily Scrum is a daily 15-minute event to inspect previous work and lay out the work plans for the
following day.

• At Sprint Review the Increment is inspected by the Scrum Team and Stakeholders, its value assessed,
and the Product Backlog updated.

• During Sprint Retrospective the Scrum Team evaluates the ending sprint and tries to find ways to
improve future sprints.

1.2 Rich Picture
The previous developers of this project made a rich picture which can be seen below.

It showcases how the waste pickers are encouraged by the government to make use of these pro-
posed sorting facilities, to help educate them on key areas for their well-being such as sanity, economy, and
more. Hereby, we see a draft for a solution to the problem, that is the employee at the sorting facility hired
by the government will be able to guide and educate the waste pickers via an application on their phones.
By using the application, the employee of the sorting facility can distribute content to the waste pickers that
are relevant to them.

3

Background

Figure 1.1: Rich Picture from the previous project group

1.3 Initial state of the Educado project
Currently, there are three major components of the project. The web application, the back-end, and the
mobile application. There are three different users: The administrator, the content creator, and the waste
picker that is in the need of learning. The web application is a gateway for the administrators and the content
creators, while the mobile application is the gateway for the waste pickers. The back-end is communicated
with both the web and mobile front-ends. The administrators (and content creators) create the courses for
the platform on the web application and the Brazilian waste pickers attend the courses through the mobile
application. The administrator is the one controlling the Educado Mobile Learning Platform.

4

Background

Web application
When the content creator logs into the web application, they do it through Google’s authentication system,
which requires a Google account. So far, this is the only form of authentication implemented on the platform.
Thus, storing the user data has not been dealt with. After logging in, the content creator is presented with
their courses, presented as a square tile with a title and an image (if uploaded). For each course, there is a
button with a title that says “edit”. Furthermore, on the initial page, the employee has a button to log out in
the upper right corner. There are two buttons on the left side. One that takes you to your courses and one
that lets you create a new course.

The Web Application has a somewhat simple design so far, as not a significant amount of time has been put
into it.

When creating a new course, you can add a title, add a description, choose a category (such as Health,
Finance, Technology and Language) and upload a cover image. Each course is divided into sections and each
section can be further divided into different components, such as text, images, videos, or audio clips. Each
of these components can be added as desired. In total, these elements make up what is essential for a full-
fledged course. Furthermore, each section can be moved around, such that the course creator can structure
their course, down to each element. Fundamentally, a course is made up of n number of sections, and each
section consists of m number of components, that are either text, videos, images, or audio.

Figure 1.2: Previous state of the web application’s front-end

Mobile Application
Currently, the mobile application is a simple React Native application that gives you access to courses. When
launching the mobile application, you are presented with a screen that lists all the courses you are actively
participating in. Currently, all elements are presented in a similar way as the web application.
Upon opening the mobile application, we encounter the following main tab as seen in Figure 1.3, where
the user is able to see the active courses that he/she is currently following, and a status over their progress.
There is a demo course available where the user can see what a course looks like so they get more familiar
with the functionalities of the app.

5

Background

Figure 1.3: Main Tab Figure 1.4: Course Tab Figure 1.5: Search Tab

Since we know that the users of the mobile application are people with minor educational backgrounds, it is
important to limit the amount of text in order to make it easier for the users to interact with the application.
This is not the case with this initial solution as it contains a lot of text, which can create trouble for the user
experience and in worst case end up with them not using the application. Besides that, there is a button
at the top-right corner where it supposedly should bring down a menu to navigate to different parts of the
application, but it has not yet been implemented. Moreover, there are three buttons at the bottom:

• Course screen

• Search

• Library

By clicking on the Demo Course shown in Figure 1.3: Main Tab, we can see an example of how a course
would look.

In Figure 1.4: Course Tab, the user can see the introduction to the course, learn how to complete and then
get a summary of the results.
By clicking on the Back button the user returns to the main screen. From there if the user clicks on the
Search-button, the screen from Figure 1.5: Search Tab, will show up.
On this page, it is possible for users to browse between available courses from different categories.

6

Background

1.4 Class Diagram of the Data Model
This section will give an overview of which classes were featured in the project when the project was handed
over. In this project, we will try and expand upon it and may change a couple of details, which will be
introduced later. In the project’s source code, all three classes have additional variables that are never used
in code and thus are not represented in the class diagram.

Figure 1.6: Class diagram of the current Educado mobile application

Classes

• Course

Course is a class that represents a course.

• Section

Section is a class that represents a section within a course.

• Component

Component is a class that represents a component in a section, this can be audio, video, images, or text.

Events
The events below give us an overview of the different functionalities that are implemented by the previous
project group. There will be an updated event table later in the report with events we have implemented. It
shows how different classes are involved in different events, this way we may consider how the classes are
related to each other and what they are able to do.

• Open application on Android Smartphone

This is an event where the waste picker is able to open the application on their Android smartphone.
As of now, Expo Go can be used to simulate the application

• See list of available courses

This is an event where the waste picker is able to see a list of courses in that they can participate.

• See overview of course content

This is an event where the waste picker is able to see all the sections of a course.

• Load video, audio, images, and text

This is an event where the waste picker is able to load the content that is located in the sections in the
courses.

7

Background

Events User Course Section
Open
application on
Android
Smartphone

+ +

See list of
available
courses

* * *

See overview
of content

* * *

Load video,
audio, images
and text

* * *

Table 1.1: Event Table: “+” Indicates 0 - 1 time. “*” indicates 0 - several times

End of collaboration

8

2 | Prerequisites

2.1 Limitations
Written in collaboration with all groups

In this section, we describe the limitations that dictate the project’s scope. The project description has set a
baseline for the project limitations:

Improve the Educado platform and transform it into a great functional Mobile Education solution
for Waste Pickers to be tested in the field by the end of the semester in Brazil.

Besides the main goal, several high-level limitations were given to us at the start of the project.

• The waste pickers would have limited access to WiFi, which means that the application should work
offline.

• The waste pickers have low to no educational background, so the application should minimize the
amount of text.

• The waste pickers use older-generation mobile phones. Therefore, they have limited storage space on
their phone, meaning that the application should not fill their entire storage with content.

Working from an existing project
Since this project is based on an existing solution, we are limited to working with the same underlying
technologies as the original solution. This means that all further implementation will be built with:

• MongoDB

• Express (Node)

• React

• React Native

9

Prerequisites

The microservice architecture from the original report also represents how the different technologies were
implemented in the received project:

Figure 2.1: Microservice architecture from the Educado Bachelor project [4, p. 47]

The only differentiation in the technology stack that has been made, is adding type support for the React
web application with Typescript, as well as some minor changes concerning the styling of the user interface
in the mobile application.

Continuous learning
Our course on agile software development ran concurrently with our project, so some sprints will introduce
agile development methods that do not appear in previous sprints. As such this project involved a steep
learning curve regarding many new concepts and methods of agile development for multiple groups. The
semester coordinator tried to help us figure out how this was done, although the approach was that we had
to fail in order to learn, which caused a lot of frustration.

Furthermore, the PO was new to the role and thus had to learn what it entailed, while the project was
ongoing. This meant that our own process was affected because the PO was not really clear about what was
needed in the first several sprints. Furthermore, the tech stack included tech that was not familiar to the
groups and thus had to be learned as the project progressed.

Deployment
Since the project is already an existing working platform, we are not going to work with the deployment
of the system, and as such, further discussion about the current deployment choices will not appear in the
report.

Dependencies
As described in the project description, the entire class of Software five is going to work on the same project
during this semester. This means that the improvement of the existing platform is divided between the three
teams, where each group is going to focus on a specific domain of the project. Group 1 will work on both
front-end and back-end of the mobile application and assist with creating a link of information flow between
the other two groups’ implementations. Group two will focus on both back-end and front-end for the web
application, for content creators who want to create educational courses for the waste pickers in Brasilia.
Group three will work on creating an engaging mobile application for the waste pickers, and will primarily
be in charge of the front-end side of the App.

10

Prerequisites

Therefore, some of our main concerns in this project are to balance the work between fulfilling stakeholder
wishes and resolving cross-team dependencies. This means that having a functionally aligned platform in
every team is more important than a single group providing new features for a single aspect of the platform.

End of collaboration

2.2 Gamification
In this section, a definition of gamification will be provided. Afterwards, vital aspects of gamification will be
presented, which will be tied to the different screens that were produced for the mobile application.

Gamification can be defined as "Applying game elements and features to non-gaming software to improve user
experience and participation..." [10].

The gamified elements that are usually implemented in mobile applications are concepts like a basic score
point system, badges for the completion of a task or achievement in the application, and a leaderboard. These
have a positive effect on the users in general, which is why the group will use more focus on integrating these
elements in the Educado application [11].

The concept of the Educado application is by nature a non-gaming software since the core functionality is to
enable content creators to produce learning material for the Brazilian waste pickers to consume. From the
very beginning, the PO wanted to have an engaging application with several gamification features, which
meant that a lot of thought went into these when designing the different screens.

While developing, the group came up with a possible structure of where and how to use points denoted
as the number of stars, badges, and leaderboard in a meaningful way. The points would be used to track
the user’s progression within a specific course, while the badges would be given if achievements in the
application were completed. The leaderboard would serve as the main way of interconnecting related users
by comparing the number of points and badges between the target user and their friends, as connecting
users via a friend list proves to enhance the retention of an application: "...the more frequent the interactions
between users, the more significant the impact of social interaction on users’ [...] application use" [12].

Therefore, the group derived which gamification elements should be implemented, those are listed below:

• Points (stars)

• Badges

• Leaderboard

• Friends list

Although the group spent time thinking about how to implement all of the bullet points above, only a subset of
gamification that relates more to the feel and engagement of the application, was in the end implemented, this

is discussed in section (12.1)

11

Prerequisites

2.3 Reading2Learn (R2L)
Reading2learn is a learning method to improve people’s reading skills. This concept will be used as a baseline
for the implementation of the exercise screen, where short videos will make up a vital part of the learning
input. This has been done to make sure that user retention stays high and that no information in the video
is lost due to attention span. This will be described further in Sprint #1 (see figure 5.4).

Reading2Learn is divided into four strategic parts which will help students to read through the curriculum
easier.

1. Reading preparation
This learning part begins before the students read the text and it is where the teacher helps with grasping
the essence of the text beforehand. There are two steps to this approach: Reading the text out loud for
the students instead of making them read it on their own and giving the students a piece of background
knowledge about the upcoming text, so it is easier to grasp without having to read themselves.

After reading a text out loud in front of the entire class, it can be necessary that the teacher also addresses
important points from the text, therefore giving them background knowledge afterwards. This knowledge
could also be covered in earlier sessions [13]. The concept of reading out loud the text that is found in the
application will be an important feature and will be explored in the coming sprints.

2. In-depth reading
In this part of Reading2Learn, the teacher helps the students read the material independently and locate im-
portant information. One paragraph is read at a time if the text is long or challenging. The instructor directs
the class to highlight two or three key ideas in each paragraph. This paragraph-by-paragraph, although it
takes time, is a very efficient method for assisting all students in learning how to comprehend what they
read. This part will not be implemented in the application, as it does not have that large amount of text.

3. Making notes
In this step, the students are taking notes based on the material they have read. The purpose is to highlight
information in the text, so other students afterwards can instruct each other on how to write and spell
different words. From an educational point of view, this is a feature that could be implemented in the
application but will not be included in this version of Educado. If later down the line, the focus of the
application changes to not only provide content but to also enable the waste pickers to learn how to read,
this would make a lot of sense to implement.

4. Joint construction
At the end of the Reading2Learn is the joint construction step. Here, the students have to use their notes
from the previous steps to create a new text in unity. The instructor will help the students take turns writing
a statement for the new text, which will help them be able to fathom the entirety of the text. As the current
state of the application do not revolve around producing content, this will not be used for the implementation
of the application.

12

Part II

Sprints

13

3 | Introduction to sprints
In this section, there will first be introduced a combined diagram of all three groups’ different user stories

throughout the semester (see section 3.1), after which the group’s Definition of Done (see section 3.2) will
be provided.

This part of the report will include the six different sprints during the project period. The general structure
of each of the sprints will revolve around first introducing the user stories for the sprint, as well as how the
sprint was managed. Afterwards, the focus will turn towards what cross-team communication happened,
as well as what were the increments of the sprint. Lastly, every sprint will have sections revolving around
which user stories were accepted or rejected at sprint review, as well as a sprint retrospective where the team
reflected on the sprints workflow and discussed how to optimize it.

3.1 Combined User Stories Diagram
Written in collaboration with all groups

In an effort to better understand what happened during each sprint in the different groups. The following
diagram was made to give the reader a better understanding of what has happened in the project as a
whole. Figure 3.1 gives an overview of the user stories that have been completed during the six sprints. The
blue ’Team COWS’ have been contributing to the front-end app. The green ’Team Half Full Stack’ has been
contributing to both the front application and back-end capabilities inside the app, while also handling the
back-end specific for the app. The yellow ’Team Sharp Deluxe’ main focus is content creation and they have
worked on both back-end and front-end capabilities.

Figure 3.1: Combined User stories diagram

End of collaboration

14

Introduction to sprints

3.2 Definition of Done

In the following, the group’s Definition of Done will be presented. This is a vital part of agile software
development, as it serves as a baseline for every increment done throughout the project. Reflecting on the
different sprints, sprint goals, user stories, and tasks, patterns emerge that point toward what could be
considered as the team’s Definition of Done.

These are some of the more apparent processes that were met while developing. Thus, the following criteria
had to be met for every increment to be accepted.

• A task is done when the integration test shows no sign of failure

• A task is implemented only once merged with the develop branch.

• A user story is completed once all the derived tasks are completed

• A new screen/view should go through prototyping and the design should be approved by the PO before
starting implementation.

• All features implemented should comply with the PO’s approval.

Note that this list was reverse-engineered throughout the sprints, as the group did not state a Definition of
Done before the project started. Furthermore, it should be noted that a similar approach could be found
across the other teams, which will be further discussed later in the report (see section 12).

15

4 | System Architecture
Written in collaboration with all groups

4.1 General overview
This section focuses on the system’s overall architecture which will be handed over and used for the next 5th
semester’s project. The ISO/IEC/IEEE 42010:2011 standards define architecture as follows:

“(system) fundamental concepts or properties of a system in its environment embodied in its elements,
relationships, and in the principles of its design and evolution[ISO/IEC/IEEE 42010:2011(E), p. 2]”

Architecture diagrams were used to properly represent the architecture of the system. They provide a visual
representation of how the system works and which components are interacting with each other.

A representation of a high-level architecture diagram can be seen in figure 4.1. The final three repositories
of the Educado system are all represented and the components use HTTP protocols to communicate over
different repositories. All communication with the MongoDB database happens in the content platform, but
they send and receive this information to/from the dedicated web and mobile repositories.

Figure 4.1: A high-level architecture diagram of the Educado system

16

System Architecture

4.2 Mobile app overview
The following is a more detailed diagram of how the mobile side of Educado is structured.

Figure 4.2: Mobile app overview

Here, the Course- and User-related aspects are coupled together in conceptual frames to better create an
easy-to-understand overview. The Course part is everything that is related to the courses themselves, that
be the structure, sections, exercises and content, whereas the User part relates more to the Brazilian waste
picker and his/her use of the application. Internally, both frames are connected to the back-end through a
service layer that handles the requests made by the user.

17

System Architecture

4.3 Back-end overview
The web application back-end is made up of a few components that each have their own set of responsibilities
within the system. Each of these components is subdivided into several layers. These layers help split up
the concerns by focusing on a single aspect of the application. The following is a short description of the
purpose of each layer.

• Routes: The routing layer is responsible for the outermost interaction with the web and therefore
contains all the valid endpoints of the API.

• Controllers: The controllers are responsible for validating the data of incoming requests and passing
that data to the corresponding use cases or services.

• Use cases: The use cases have the responsibility of carrying out the actual steps in an operation. For
example, a use case might be approveMotivation(motivationId) in the case of successfully signing
up as a new content creator. The use case should find the existing motivation record with the given id,
then update the status to approved, and finally, send an email containing a one-time password to that
applicant. The use case would contain the for carrying out the steps.

• Domain: The domain layer is where the main entities in the system reside. For the case of content
creation, examples of an entity might be the Course, Section, Category, and so on. The entities are
themselves responsible for doing the state changes that always ensure that they are in a valid state.
For example, an applicant’s motivation should not be able to go from an accepted state to being a
rejected state as this would rarely be the case in the real world. The motivation should also always
include the first name and last name of the person applying. These types of rules would be enforced
inside the motivation entity itself.

• Gateways: The gateways have the responsibility of transforming and persisting data to the database
while providing a simple interface to client code.

The below diagram shows how the components of the back-end each store these layers as well as the direc-
tion of dependencies between them.

Figure 4.3: Component diagram of the back-end

End of collaboration

18

5 | Sprint #1
Duration of sprint: 22/09 - 06/10

5.1 User Stories
The first user story was to show a demo for the exercise screen to our PO

• As a waste picker I want to view a demo course

5.2 Sprint management
Based on experience, we have decided to split the group into subgroups with two members each and an
extra member that would rotate between the subgroups and help where it is needed.

The group has also chosen to make a physical Kanban board as well as a digital Kanban board on ClickUp, to
store the Sprint Backlog and its tasks, which was created by dividing the user stories into smaller sub-tasks.

Together with that, the group has also decided to utilise the website called Figma, which is a website for
creating prototypes. This website would be used by the group to visualise their vision of given user stories
that the PO would provide.

5.3 Cross-team coordination
During the first sprint, coordination was not USD between groups, because each group was in the start stage.

However, to agree on the general data structure of the problem domain, the group created a data model in
collaboration with the web-oriented back-end group, because the two groups represented the two endpoints
of the application.

After this, the back-end group Team-sharp-deluxe focused on the logins of content providers, while the
mixed group Half-Full-Stack focused on the waste pickers login screen of the application and we, the front-
end group Cows, focused on designing the exercise page.

19

Sprint #1

5.4 Design & Implementation
In the first sprint, the group’s main focus was to create a design for a "demo course". We figured that a course
should have x amount of sections and these sections should then have multiple exercises. A figure of the
imagined structure, which also aligned with the common data model can be seen below:

Figure 5.1: A sketch of the structure of a course

Our main requirement was to make an application, as simple as possible with a minimum amount of text
and more focus on accessibility since the Brazilian waste pickers would not be well-educated and thus be
limited by their ability to use the application due to a lack of reading skills.

Furthermore, the application should be engaging and exciting to use. Therefore, we introduced a gamified
user interface, where the main inspiration came from the educational application Duolingo [14] and the
online quiz application Kahoot (www.kahoot.com). Here, the idea of having a progress bar and a reward
when answering correctly was implemented to improve the user experience and retention (see section 2.2).

The concept of how the structure of the content, created by the content creators, should be was based on
the R2L theory mentioned earlier in the report (see section 2.3). It should be noted that the design can only
encourage the content creators to produce content that adheres to the method, as it is ultimately the content
creators that will decide the final form of the content. Nonetheless, the group designed the functionality of
the application to enable the content creators to do just that.

The idea was that the amount of content for each exercise should be limited by using short videos to keep the
exercises simple and engaging for the user. As further inspiration, Tik-Tok [15] where used, as the duration
of the content is usually lower than 30 seconds.

Prototypes
Low- and high-fidelity prototyping was used by the group to generate a design that was shown to the PO to
either be accepted or rejected. The process of making the low-fidelity prototypes started with each group
member sketching their idea of an exercise screen, with the PO’s requirements in mind. After this, each
member presented their sketch to the rest of the group, after which each member had to vote on one of the
sketches. This ended up like this:

20

www.kahoot.com

Sprint #1

Figure 5.2: low-fidelity prototype of exercise page

After the low-fidelity prototype was accepted by the PO, the group went on to create a high-fidelity prototype.
This process was done in a similar way to the low-fidelity prototype. Instead of each member making their
own high-fidelity prototype, the group was separated into two groups that were going to make a prototype
each. In our group, we used Figma (see www.figma.com), which is an online tool that is specialized in
creating prototypes in a straightforward way. The result can be seen below:

Figure 5.3: high-fidelity prototype of exercise page

21

www.figma.com

Sprint #1

Exercise screen
The group chose to start working on the "inner" layer of the course, which was the exercise screen. One
requirement that the group had gotten from the PO, was that the exercises should be doable for people
who were illiterate. Furthermore, the video would provide some kind of question, which the user could
then answer by pressing one of four buttons. We took inspiration from the Kahoot quiz-like structure (see
www.kahoot.com), especially considering its design. At the end of Sprint #1, we ended up with an increment
where these features are implemented, as can be seen below:

Figure 5.4: Exercise screen at sprint 1 Figure 5.5: Wrong screen at sprint 1

5.5 Sprint Review
At the end of the first sprint, the user story was accepted by the PO. The first sprint’s results were satisfying
for the PO. The objective was to produce a representation of the content inside a course. Even though the
group only managed to create an exercise screen, the PO was satisfied with the work.

5.6 Sprint Retrospective
The group discussed splitting up into smaller groups of two to three individuals to be more effective in
working on smaller tasks. This method was effective in the implementation part of the sprint, but it was
necessary for the group to be working together as a whole during the design phase to get everyone’s opinion.
Working in smaller groups went incredibly well when we had to code small tasks from the backlog because
it was easy for two to three people to communicate and code together on a single screen.

Time estimation was used in Sprint #1 to attempt to figure out the size of the tasks on the kanban-board.
Each member would think of the number of hours a task would take and all members would say it out loud
simultaneously, we would then take the average number and assign it to that specific task, this helped with
figuring out the workload of each individual sprint. If we had too many work hours, we would have to
prioritise which tasks would be completed. This would of course happen in cooperation with the PO if it was
the case.

For future reference, we made an agreement that we should have a supervisor meeting once a week.

Overall, the group had a very low absence rate, and everyone was quite engaged. There was enough time in
the sprint for the group.

22

www.kahoot.com

6 | Sprint #2
Duration of sprint: 06/10 - 20/10

6.1 User Stories
The demand for this sprint was to expand the application so that the user was able to have different sections
with their own individual exercises. Therefore, the group made four user stories for this sprint.

The first user story focuses on the expansion of the application itself, as the user should not be bound to
one specific exercise, but should be able to switch between different categories or sub-categories within the
application.

• As a waste picker, I want to have an overview of a course with all the sections inside

User stories two and three lay the foundation for the gamification element of the application, as the PO
wants the user to be more engaged in the content of the application by showing progress, as well as gaining
achievements when completing exercises.

• As a waste picker, I want to see my progress within a specific section.

• As a waste picker, I want to see my progress for sections in the course view

The last user story is based on personalizing the application for each user. This is important to keep user
retention high because the user will feel that the application is tailored to them and their needs.

• As a waste picker, I want to see my profile(demo)

6.2 Sprint management
The group had four different user stories, which compared to the first sprint, meant more splitting within
the group to advance on all four user stories at the same time.

At the beginning of the sprint, we started out by deconstructing the four larger tasks into a lot of smaller
tasks, so our physical Kanban board was filled with small and concrete tasks. When creating a sub-task, the
group estimated how many hours, we believed the task to take, so that everyone had a united opinion on
the level of difficulty of the task.

The Kanban board was used each day to get an overview of what each group was working on, what assign-
ments that have not been started yet, and which tasks were completed already.

When a task was completed by either a sub-group or an individual, they already knew the next task inside
their scope, as most of the assignments were gone over in the first meeting, when the Kanban board was
created.

Afterwards, the group divided itself into smaller subgroups of 2-3 people, so each individual had at least one
team member to talk issues over with. Due to members of the group being absent, and because of work or
other obligations, the group made some "flex" tasks, which were mostly assignments related to the report, so
that members of the group could work on assignments when they would have the time to do so.

23

Sprint #2

6.3 Cross-team coordination
During this particular sprint, coordination across the three groups was not used because all groups thought,
that they still were in the discovery phase. However, this turned into complications during the sprint, as
no communication, but a lot of implementation, led to the project moving forward, but in three different
directions.

Our group thought, that we had a clear indication of what the other two groups were doing, but when we
were presented with their part of the product, it was not the same vision. Therefore, all groups had to
backtrack a lot of progressions to make the implementations work together.

We did however talk about the overall vision throughout all three groups, which would be the personalization
of a user. So the back-end group, who mainly focused on the database and the web application, focused on
log-in for content creators, and the mixed group, who mainly focused on tying the database together with
the mobile application, focused on the log-in screen for the waste picker in the application.

Our group, the front-end group, decided on the different aspects listed in the section before, but still with
the collective goal of personalizing the application.

6.4 Design & Implementation
The focus in the second sprint were to make the course view and a profile view. These two segments provide
information about the thought process of the application during the sprint, how the user interface evolved
based on low-fidelity prototypes, and which widgets are used and why.

Prototypes
The group made low- and high-fidelity prototypes to create a design that got approved by the PO before
starting the implementation.

We made two different low-fidelity prototypes: one for the profile screen and one for the course view screen
(see figure 6.1). The importance of these screens is the same as the exercise view, which is to create a nice
and easy overview while implementing gamification and personalized elements as well.

Each group member sketched a low-fidelity prototype for each of the screens. Below are figures showing
two of the sketches, which represent a good baseline for the overall structure, that the group chose to move
forward with.

Profile screen Course view

Figure 6.1: Low-fidelity prototypes for profile and course view

24

Sprint #2

After the low-fidelity prototypes were constructed and a general design was accepted by the entire group,
high-fidelity prototypes were made by each of the screens using FIGMA:

Profile screen Course view

Figure 6.2: high-fidelity prototypes of the profile screen and the course view

Profile screen
When thinking of the design for the profile screen, the group’s main focus was on getting a simple and easy
overview, without too many features, that could confuse the waste pickers when using the application. When
creating the demo for the profile screen, it was important that the personalized element was present from
the moment the waste picker accessed the screen. This was made clear by the use of a profile picture in the
centre of the screen, as well as the user’s name above.

To create some form of gamification aspects in the profile screen, the group made a button to add friends,
so the user would be able to see their friends’ progression in the future when checking out their profile.

25

Sprint #2

Figure 6.3 shows the current state of the profile. The initial application has a profile screen, so the group had
to find other applications to draw inspiration from. As gamification and retention are key without using too
much text due to the limitations of the project (see section 2.1), the group turned to Duolingo for inspiration.
The problem with Duolingo is that the application has a lot of features that can seem unmanageable at first
glance so the group decided to remove all the unnecessary details, to begin with, so the core features are
present, and then maybe in the future implement more gamification elements. There is an image of the
Duolingo profile screen for reference below as well:

Duolingo profile screen Current profile screen

Figure 6.3: The current state of the profile screen at sprint 2 compared to Duolingo

Course screen
The course screen showed a category name and an associated icon at the top of the screen to inform the
waste picker which category they were currently in. Here, the user would also be able to see their progression
across all of the courses shown on the screen. This progression was established as a fraction indicating
progression denoted in a star currency. Like the profile screen, the main focus was getting a simple and easy
overview, without too many features.

As mentioned earlier, the main focus for this particular screen was a simple overview. The user should be
able to quickly realise what is what without having to click the different buttons on the screen actively. This
was implemented by creating a list of the different sections, where each section has its unique title, and an
icon to better understand the context of the section and the individual section progression. The latter was
shown by using two forms of detailing, the first being the fraction mentioned earlier, but instead of it being
the overall progression, it would only be for the specific section. The second form of progression detail is the
colour of the section. As the waste picker progresses further, the section box would simultaneously becomes
greener.

We also implemented some shading on the sections, as we wanted the user to be guided towards the sections
that were previously progressed by the waste picker, although it is important to note, that all courses could
be chosen.

26

Sprint #2

Below is two images representing the initial course view received at the beginning of the semester and
the newly implemented one. As mentioned earlier in the "Limitations" section (see section 2.1), the waste
pickers are illiterate, so the limitation of text is necessary. The use of widgets is therefore important, hence
the implementation of icons in the new course view, as well as the gamification elements, incorporated in
stars, to keep engagement and viewer retention high.

Initial course view Current course View

Figure 6.4: Here is the new course view compared to the initial course view

6.5 Sprint Review
By the end of the second sprint, all four of the user stories got approved by the PO as the aim was to make
a rough demo of the different screens, where the specific detailing of the screen could be made in a later
sprint. The PO was pleased with the design of the interfaces, and thus the increment that the group had
produced in the sprint.

The sprint planning for the next sprint was based upon the common goal between all three groups to inte-
grate each other’s work into a functioning working product.

The PO was keen on adding additional different gamification elements in the application so that user reten-
tion would be high and the waste pickers would keep engaging with the content.

6.6 Sprint Retrospective
When reflecting on the second sprint of the entire project, the group discussed the value of every member
creating low-fidelity prototypes, as this way of doing things took up a lot of time at the beginning of the
sprint and could perhaps have been done in two to three people instead of seven.

Another thing the group spoke about, was communication with the PO. Because of the many design choices
in front-end development, it was important for us to have a direct line of communication where we would
be able to get things continuously approved quickly, and not just at the end of the sprint. Therefore, we
obtained the PO’s WhatsApp, as this gave us the tool to communicate at all times.

27

Sprint #2

Communication with the PO was not the only communication, that was needed in the upcoming sprints.
This sprint was heavily affected by a lack of communication between the three groups, and this needed to
change so that every team knew the direction and what ends needed to be connected with each other. The
difficult part for all groups was the fact that nobody knew while being in the process, that communication
was critical, therefore we sought out not to use it. In hindsight, there might have been some tools or exercises
that would have been helpful to learn beforehand, as it would have made the progression throughout the
entire project better.

At the end of the retrospective, the group talked about how the smaller subgroups had helped the produc-
tivity a lot, and how it would be an important tool to use in the upcoming sprints.

28

7 | Sprint #3
Duration of sprint: 20/10 - 01/11

7.1 User Stories
The next step in developing and expanding the application after getting an overview of the course with all
the sections within, is the ability to explore new courses. Therefore, the goal of this sprint was for the user
to be able to explore new courses and thus have a basic MVP (minimal viable product) with all important
elements, such as sections, exercises, etc. So the only user story for that sprint was:

• As a waste picker, I want to be able to explore new courses

This user story also carries several tasks and decisions inside it, such as determining the number of stored
courses in the course view.

7.2 Sprint management
In this sprint, we followed the same work flow as in the previous sprints. We started by dividing the user
story into small and concrete tasks and put them onto our Kanban-board so we had an overview of the tasks
we had in the sprint.

Then we made sure that each member of the group understood the tasks to be able to finish the wanted task.
Afterwards, we started to assign tasks to sub-groups or one of the members, depending on how difficult it is.
Then we made an estimated on how time consuming each task will be.

When a tasks was completed, it would be moved to the done part and another task would be started, where
each update would be represented on the Kanban-board.

7.3 Cross-team coordination
In this sprint, the cross-team coordination did not happen as it was supposed to. The three groups kept in
contact but not as originally agreed upon, which led to confusion in the groups. The dependencies between
the groups was growing due to the progression of the development. Therefore, coordination between groups
was much needed to make sure all groups were on the same page.

We did talk about the common goal of this sprint, which was a working product with a working login system.
So the mixed group focused on the login system and the password strength and the back-end group focused
on adding some more features to the content creator applications and dashboard. Our group focused on the
course view and making the features within the application dynamic.

29

Sprint #3

7.4 Design & Implementation
This section provides information about the thought process of the application during the sprint, how the
user interface of the explore screen evolved based on low-fidelity prototypes, and which widgets are used
and why.

Prototypes
The group has made low-fidelity prototypes that would show the explore screen to the PO to get the design
approved and then start working on the implementation part.

On the contrary, in the search screen in the initial state (see figure 1.5), we have discussed reducing the
number of texts so the application becomes more user-friendly. Therefore, the title of the screen will be a
single word in Portuguese "Explorar". And to make the application easier to use we decided to add filtering
to the courses, so the user will be able to press and filter the courses by categories. But this feature would
not be implemented in this sprint, since we just focused on exploring new courses. The next step in making
the explore screen is to decide where the active courses should be. Active courses mean the courses that are
in progress. So we decided to place the active courses at the top of the course list and give them a colour, so
they can be distinguishable.

Figure 7.1: Low-fidelity prototype for explore screen

30

Sprint #3

Explore screen
After the low-fidelity prototype was approved by the PO, we started making the implementation of the
explore screen. The implementation was based on the low-fidelity we made, with some additional changes.
We started by adding a button in the bottom menu bar with a search icon to make it easier for the user to
get on the explore screen. The title changed to "Explorar Novos Cursos" which means "Explore New Courses"
to improve the user interface. The three filtering buttons were placed under the title, where we have the
current topics in the app. Then the list of courses was implemented, where the active courses are placed at
the top of the list and the rest of the courses come after. We decided to give the active courses the colour
green so the user can see the difference between them and the other courses. Also, we decided to give a
small title for each course plus an icon to show what the course is about. As mentioned in section 7.4, we
did not finish implementing the filtering system, therefore we continued with the implementation of this in
the next sprint.

Figure 7.2: The state of the explore screen at sprint 3

7.5 Sprint Review
At the end of this sprint, the user story was accepted by the PO, which was primarily about the explore
screen, while the part about storing the courses ended up not being our responsibility. We faced some issues
while we tried to make the different features dynamic in the application and especially when we tried to
make the video in the exercise screen dynamic.

The sprint planning for the next sprint was based on refactoring and moving closer to the final working
application.

7.6 Sprint Retrospective
This sprint we were missing some members due to sickness. In addition to that, we spent time searching and
trying to solve the issues we came across while trying to make the functionalities dynamic, thus there were
not a lot of increments.

31

8 | Sprint #4
Duration of sprint: 01/11 - 15/11

8.1 User Stories
The main focus in this sprint was to get a course shown using the stored information on the phone. This
would allow us to make an application that reflected a course created by content creators. During this, we
have seen the group who worked with the web application for content creators use a UI library and we
wanted to implement something similar. Therefore, a secondary focus was to shift attention to the user
experience. The following two user stories were made for that:

The first user story focuses on visualizing the stored course as a waste picker.

• As a waste picker, I want to be able to view a stored course

The second user story would set focus on a uniform design by using a UI library.

• As a waste picker, I want to be able to have a better user experience while using the App

8.2 Sprint management
The group continued to work with the two Kanban-boards where the user stories are broken down into
smaller tasks, after which they will be assigned to a subgroup.

8.3 Cross-team coordination
In this sprint, we made a breakthrough in the importance of cross-team meetings since we started to heavily
depend on the other two teams in order for our front-end to reflect the data in the back-end and the data
that needed to be stored on the device. We started to communicate the idea visualized in Figure 8.3 by the
middle of this sprint.

8.4 Design & Implementation
The main idea of the fourth sprint was to get the Exercise screen from Sprint #1 (see figure 5.4) to also work
together with Course Screen from Sprint #2 (see figure 6.4) and Explore screen from Sprint #3 (see figure
7.4). The group chose to focus on getting the Course screen to show a course that was actually stored on the
device of the user, while also enhancing the user experience with better UI. We did not make any prototypes
for this sprint, as the user stories focusing on design for this sprint could be done faster by implementing
design directly with react. By playing around with different libraries and seeing how they would look in the
application we could move faster. Design choices for the screens will be explained in their corresponding
segments.

32

Sprint #4

Course screen
The Course screen was the first screen to get a rework based on the idea of having an application with a
better overall UI experience. The Course screen had to be changed a lot if it was to follow the same feeling
as the rest of the app. In this current stage, we decided to only have the UI reflect the data that could be
stored in the app. This meant that all hard-coded progress indication was removed. The result can be seen
in figure 8.1 and when compared to figure 6.4 from Sprint #2, the only thing we kept were the Course Icon,
Title, Section Titles, and Section icons.

Figure 8.1: The state of the Course without Active course at sprint 4

Explore screen
The Explore screen started to take shape with both better UI as seen in the lower part of figure 8.2 while we
also tried to make the initial infrastructure in order to support the application to base its content on stored
courses from the actual device.

Figure 8.2: The state of the Explore screen at end of sprint 4

33

Sprint #4

The initial communication that needed to be made from front-end to back-end started to take shape as seen
in figure 8.3. The idea was that an element on the screen should directly reflect the state of the application
based on what was stored. The idea of having a controller or service layer in the application that took care
of the state of storage came to life. And this was where the true separation between the front-end group
and back-end group also became visible. We decided that the controller/service layer was a back-end task
although the code would still be part of the application and shipped inside the app.

Figure 8.3: Technical picture of communication between front-end and back-end

34

Sprint #4

Exercise screen
In Sprint #4, the Exercise screen was made to be able to navigate to two different screens based on the
choice of the button clicked (see figure 8.4). If a button marked with a correct answer was clicked, the ’Right
Answer Screen’ would be navigated to. If a button marked with an incorrect answer was clicked, the ’Wrong
Answer Screen’ would be navigated to. An option on both of these screens to click the green button in order
to continue would be present, and this button would navigate to the next exercise in the current session if it
was clicked.

Exercise Screen Right Answer Screen Wrong Answer Screen

Figure 8.4: The state Exercise Screens in sprint 4

8.5 Sprint Review
We found out that the user story about being able to view a stored course was not entirely our responsibility,
meaning that we did not sufficiently delimit the responsibility of each group when the user story was defined.
This resulted in us making some breakthrough thoughts that we could bring to the next meeting between
groups, but unfortunately, we did not have anything to contribute to the sprint goal with this user story since
we used a lot of time thinking about how we could communicate from front end to this storage layer that did
not exist yet. This user story ended up being way more significant than we originally thought, and hence we
knew beforehand that it was going to get rejected, and we extended it into the upcoming sprint. The user
story about having a better user experience also ended up taking longer than we anticipated, which meant
that we knew this one was also going to get rejected in the sprint review.

In this sprint, we made a breakthrough about how the local storage would be implemented, and what the
responsibilities between each team would look like. For this reason, we started to feel the need to commu-
nicate closely with the other groups. Therefore, we talked with the other groups about having alignment
meetings between the scrum masters of the different groups to get a better understanding of where each
team was at without involving everyone. This way only one person needed to make sure that information
was flowing between teams.

35

Sprint #4

8.6 Sprint Retrospective
Group retrospective
In the retrospective, we talked about how we could have more time to work at our jobs while being fair to
everyone in the group about how many hours were put into the project. We had previously worked with flex
time, and this idea was initially a good one, but the people who had a lot of flex time started to go into debt
and did not have a lot of time for the project, and we could see that it was not sustainable to keep racking
up more flex time as we went along, so we tried to eliminate it from the schedule and essentially just gave
everyone who was not working a job half a day off so that the work balance between group members where
aligned.

During the retrospective, we also made some more clear guidelines as to whether we meet whenever
course/lectures are moved in a week: We ended up agreeing to use the time on the project if a course
was moved, as the time reserved by the moved course would affect the project’s timescale in the future.

We also talked about how to communicate more when we are absent from the group project. If you are sick,
you need to tell the group the first day and tell them the day before you come back. This way everyone
always knows who will come work on the project on the given day and rather wait for someone before
starting on something big. Furthermore, the group felt like we spent a lot of time on research and thus not
a lot of increments in code.

Shared retrospective
During this fourth sprint retrospective, we did a collaborative exercise with the other groups.

Written in collaboration with all groups

During the sprint retrospective, at least one member from each group formed a team and discussed what
they felt did not go well in this sprint and how we could improve it. A summarized list of some of these
discussions has been collected below:

• Sprint review: One of the things discussed was the flow of the sprint review. It has happened that
during one group’s review they have been interrupted with questions or comments. The groups should
be allowed to finish their review before questions are asked, and ideally, further discussions about
future approaches should be done after the review.

There has also been a noticeable lack of engagement from other teams during the presentations.
Everybody should follow along during the review.

• Communication: There is still insufficient communication between the groups. There has been a
slight increase in meetings since it was discussed in earlier sprints, but it has mostly either happened
spontaneously, or only two of the three groups have been partaking in it.

As per request, the number of meetings between groups has increased slightly. However, the meetings
have been quite informal as they are usually not scheduled ahead of time and occur in a more sponta-
neous manner. There has only been held one official meeting in which all three groups partook.
In order to get a better communication flow, a fixed meeting between all Scrum Masters of each group
has been set. For the rest of the project, the groups will have at least one meeting every Friday at
10:00.

• Backlog: A topic that has been discussed several times during this project is having a shared backlog
between all groups so that every group always know what the other groups are working on. The PO
initially promised to create this with the Trello boards that were shared with him, but we have not yet
received them. A person from each group should get together to set up a backlog. Ideally, the Scrum
Masters will do it at their weekly meeting.

36

Sprint #4

• Alignment: Each group has been focusing on their respective user stories and goals. As a result of
this, the common end goal has not received a lot of attention. This also means that everyone has made
their own design choices for both the code structure, as well as the front-end design.
This has led to extra work, as the design patterns should ideally be consistent in a repository so future
developers easily can understand the flow of the code.

There also needs to be better alignment between front-end and back-end developers. If changes need
to be made to one of the routes in the back-end repository, a front-end developer has to be informed
about this, since it can affect their code as well. Another contingency that will be used from now on
is to have shared documentation for all REST APIs, so front-end developers can easily check existing
APIs and how they are to be utilized.

• Definition of Done: One way to fix our alignment issues would be using a common definition of done
(DoD). There has not been any agreed-upon set of rules for this yet. One DoD that will be added is
that each repository should have a branch that will mock the master branch of the project. Only the
working code should be pushed to this branch. In order to maintain this, each group should appoint a
code review master. Their job will be to code review and accept the other group’s code before it will
be pushed to the master branch.
When the code is reviewed it should also be checked to see if it follows the newly agreed upon design
pattern, so our code base is aligned.

End of collaboration

37

9 | Sprint #5
Duration of sprint: 15/11 - 29/11

9.1 User Stories
In the previous sprints, the group have been focused on the functionalities of the app. Eventually, this led to
a visually impaired application. For this reason, the PO decided, in cooperation with the group, that it was
time to focus on making the application more visually cohesive. Which led to the user story:

• As a waste picker, I want to use a visually cohesive app

Another crucial aspect of the application is its user-friendliness. In addition to being functional, the applica-
tion should be intuitive and easy to use. To ensure that it meets these criteria, the application will be tested
by Brazilian waste pickers (see section 11.2). The final user story ended up as follows:

• As a waste picker, I want a user-friendly experience

In the previous sprints, we were able to show courses with a StorageController, we did this to mock some
data so that we could design the application. In Sprint #5, another focus was to go from this mocked data
to an actual local stored data, which led to the user story:

• As a waste picker, I want to view a downloaded exercise of a section

9.2 Sprint management
The group will continue to work as described before in the previous sprints. We ideally want to create time
to write tasks revolving around the report that has to be written at some point, and we are aware that we
are behind schedule.

9.3 Cross-team coordination
In the previous sprint’s retrospective (see section 8.6), it was determined that effective communication
between teams was crucial for the success of the project. As a result, a plan was implemented where a
Scrum Master from each team would meet every Friday to document the progress of each team. This helped
to foster the development of a shared, cross-functional product. In the fifth sprint, our team was required
to collaborate with the back-end mobile group in order to successfully implement the user story outlined in
(9.1).

9.4 Design & Implementation
One of the focuses of this sprint was to enhance the design (see section 9.1). The majority of the group’s
work was to make the application more user-friendly and make the design cohesive. Furthermore, we had to
make it possible to locally store exercises. This was a "shared" user story since a big part of the responsibility
for its success was on the back-end mobile group. Our group had already prepared for this by mocking the
data. We only needed to adjust a few things to make it work.

38

Sprint #5

In the fifth sprint, we decided to add tailwind CSS see (https://tailwindcss.com/) to our project. Tailwind
CSS is a framework that makes it easier for developers to write valuable CSS code. Tailwind CSS makes it
possible to create your own theme throughout an application. This helped us produce a matching design in
the application.

Figure 9.1: The project theme colours in tailwind CSS

Another helpful design tool we used was https://www.canva.com/colors/color-palettes, with this tool
the group choose a palette of colours that matched together. We ended with a palette called "Summer
Cocktail" because we thought they represented the colours of the Brazilian flag.

Explore screen
The explore screen was re-designed in Sprint #5. Instead of separating the active/non-active courses from
each other, we decided to colour code and filter them instead. This gave the design a more unified look.
Furthermore, a filter function was added to the screen, so a user could filter the courses by category. The list
is made in a way so that the active courses always will be at the top of the list. This makes it easier for the
user to find the active courses.

Explore screen (filter
function)

Explore screen (no
locally stored courses)

Explore screen (one
stored course)

39

https://tailwindcss.com/
https://www.canva.com/colors/color-palettes

Sprint #5

Navigation Menu
The navigation menu was styled with shadows and theme colours.

Course screen - with no active course
The course screen was changed so that when the user loads in for the first time, the user will be prompted
with a button to go explore courses.

No active courses
screen

9.5 Sprint Review
In the sprint review in Sprint #5, only one of three user stories was accepted. A reason for this could be,
that a lot of the group’s time was used to merge and align with the back-end mobile group. Furthermore,
the user stories (see section 9.1) relied on the progress of the back-end mobile team.

• Accepted user stories

– As a waste picker, I want to use a visually cohesive app.

• Rejected user stories

– As a waste picker, I want a user-friendly experience.

– As a waste picker, I want to view a downloaded exercise of a section.

40

Sprint #5

9.6 Sprint Retrospective
The main focus of the fifth retrospective was communication and alignment with the other groups. The
majority of things that went wrong in Sprint #5 could have been better/fixed with good communication and
better planning between the groups.

User stories

1. User stories were not specific enough/too many

The initial user story workload of Sprint #5 was very overwhelming, and the group did not think we would
be able to finish them all. The user stories were also phrased in a way where the acceptance criteria can be
very subjectively measured (see section 9.1). It is hard to define, what a visually cohesive and user-friendly
application is. This led to a stressful experience for some group members. In retrospect, we should divide
these user stories into smaller more feasible user stories. This would have given the group a feeling of
progress and a better understanding of the workload.

Alignment & Communication
Alignment and Communication in the fifth sprint were essential for the success of the user stories since this
user story involved two groups.

1. Merge happened late in the sprint because of a lack of alignment and communication.

• Due to bad/no planning the merge between the front-end mobile group and back-end mobile was
delayed. If we had used more time planning at the start of the sprint, we would have saved time
and work.

2. Multiple merges across sprint.

• We used a significant amount of time merging with the back-end mobile group, this time could
maybe have been saved had both the groups been aligned.

3. Knowledge-sharing in groups and between groups after merging to ensure that everyone knows the
codebase.

• Due to the feeling of being behind schedule, this process was down-prioritized. In a perfect
scenario, every member of each group should know the code.

4. Lack of common Definition of Done led to coding style issues and UI-styling.

• During the sprint sessions with the PO the groups would agree on user stories for the sprint. An
improvement could be to agree on the definition of done in these sessions. This would also solve
the problems with the unknown workload of the user stories (see section 9.6)

5. Frustrating to not have things work due to the late development of features from the back-end mobile
group.

• The back-end mobile group were lacking behind, and this ended up impacting us since we relied
on them to work on their part of the user story. Our group tried to poke them to get them going.
This was very frustrating since there was nothing our group could do, this meant that the user
story went to a halt.

41

Sprint #5

Backlog
1. Sprint backlog is used less than before, lack of tasks one can start.

• This problem could be solved if the user stories were defined better and spitted into smaller more
doable tasks (see section 9.6).

2. Tasks that did end up in the sprint backlog were nicely specified. Everyone knew what the task was
about.

3. ClickUp https://clickup.com/ was not being used.

• ClickUp is an online kanban/planning tool for agile development. This tool could have been
useful in Sprint #5 since there was a lot of absence in the group. It could help give an overview
to the members who were absent.

Positive experiences
1. It was a success to back-sit code with the other groups.

• A good learning experience was sitting and coding with the other groups, this also helped us
in understanding the other group’s code. We learned about their struggles and ideas. This also
helped us align.

2. Every time we had a merge with another group one member from each group would be there to review
the process.

• This helped make sure no mistakes were made. Furthermore, it gave the opportunity to show and
tell about each individuals groups code.

Other issues
• Tailwind (if we implemented it easier, it would have been easier to switch the styling library) has a lot

of “quirks” on Android.

• Stressful sprint, we forgot some of the structural elements in our workflow

• Because of dependencies, the group did not manage to create time for report-related tasks

• A lot of absence due to being sick/work.

42

https://clickup.com/

10 | Sprint #6
Duration of sprint: 29/11 - 13/12

10.1 User Stories
The last sprint of this project was mostly used to fulfil the MVP (minimum viable product) and have a product
ready for deployment. The first user story for this sprint was:

• As a waste picker, I want to view a downloaded exercise of a section (extended from the previous sprint)

This is a continuation of the same user story we had in the previous sprint, which we did not fulfil. The idea
behind this user story is still the same; to integrate the application and give us the ability to store the courses
locally by downloading them. The next user story was:

• As a waste picker, I want to click the buttons in an exercise to hear the different answers (focus on text-to-
speech)

This user story would allow the user to hear the answers when they would press the answer buttons in an
exercise. The last user story:

• As a waste picker, I want to see my progression within a section (smaller focus on progression implemen-
tation)

This user story is meant to visualize the progression within a section for the user, so they would know how
far they are within it and how many exercises are left until the section is completed.

10.2 Sprint management
In this sprint, we kept working the same way we used to in the previous sprints. We began this sprint by
dividing our user stories into small tasks and putting them onto our physical Kanban board.

These tasks will be done within smaller subgroups within our group, just like in previous sprints, unless the
task revolves around integration. If it does, then we will make a subgroup that consist of a mix of our front-
end application group with the back-end application group. This will greatly ease the process of integration,
which will allow us intertwine two different parts of the application together, and we need both groups to
cooperate to have it working correctly. Once the task is accomplished, we would naturally move it in our
physical Kanban board to the done section and the subgroup will move on to the next task.

With each Daily Scrum, we will briefly go through the progress that each subgroup accomplished the day
before and what the plan is for today.

10.3 Cross-team coordination
In this sprint, we continued the cross-team meetings where Scrum Masters would meet on each Friday and
talk about the status of each part of the project.

During the meetings, we would ask each Scrum Master about what the team is working on, what is needed
from other teams, what we plan on doing for the rest of the sprint.

43

Sprint #6

Because this is the last sprint in the project, all teams were heavily focused on finishing what was missing
to achieve the MVP and begin working on the rapport. From previous sprints, we chose to have a common
layout for the rapport that each team would use. There were not a lot of code-related discussions going on
as this is the last sprint, so the only thing we needed to do is integrate each separate part of the code into
one cohesive application. A lot of time during the meetings was used on talking about how the common
layout for the report should look like.

10.4 Design & Implementation
In this sprint, there was not much increment in relation to the front-end of the application. Therefore
most of our implementation came from polishing of what was already done, what was still missing (was not
dynamic), and the overall integration of the product. That is why there is will be no section about prototypes
because we were not developing anything new in this sprint.

One of the things that were implemented in this sprint was making our text-to-speech system dynamic, which
would utilize the expo-speech API [16]. Before we had our answers hard-coded into the app, but this time
we can use the answers given by the content creators. This information is stored locally on the phone when
the course is downloaded. The way our text-to-speech work is relatively simple, we just pass the specific text
we want to play when the button is pressed. The code can be seen below. It is also worth mentioning that
text-to-speech is also functioning offline, which is important for our users.

1 / function handlePlaySound(tts) {
2 Speech.stop()
3 Speech.speak(tts , {
4 language: "portuguese",
5 voice: "com.apple.ttsbundle.Luciana -compact"
6 }
7)
8 }

Explore screen
Besides this, we did a lot of integration of the app. Where the data would be used to dynamically implement
the front-end. In figure 10.1, we can see what the application looks like with four different courses, and
what happens when one of the courses is downloaded to the local storage, and how it changes visually.

Explore Screen with no
stored courses

Explore Screen with one
stored course

Figure 10.1: Explore screen without and with a stored course

44

Sprint #6

Exercise screen
Besides this, we can also look at how the Exercise screen has changed since the prototype from Sprint #4,
which was presented in section 8.4.

The present version of the application has changed a bit since Sprint #4. The present version can be seen in
figure 10.2.

Exercise Screen Right Answer Screen Wrong Answer Screen

Figure 10.2: Present Exercise Screen with Right Answer Screen and Wrong Answer Screen

As we can see from the figure, the screens have changed a bit from the previous iteration. In the present
one, the screen got a background colour and the colours of the buttons have also slightly changed. Which
differs from the previous iteration. Besides the visual aspect, the Exercise Screen can now also dynamically
change videos using the ones that are locally stored when the course is downloaded.

Course screen
The Course Screen has had a lot of drastic changes since its first iteration in Sprint #2 (see figure 6.4). The
individual sections do not contain any icons or do not have the section progress that we had in the previous
iteration. Besides those changes, we also removed the gamification elements, as there was not enough time
to accomplish it and achieve a satisfactory result.

Figure 10.3: Course Screen

45

Sprint #6

Profile Screen
When we look at the old Profile Screen (See figure 6.3) and compare it to the current iteration the changes
were not as drastic as they were in the Section Screen. The main change was removing the friend list which
was not doable at the present stage of the project. Besides that the option to log out and delete the account
was added and settings were removed. The present profile screen is really simple the user can see their
username, and phone number and have the two options that were mentioned before.

Figure 10.4: Profile Screen

10.5 Sprint Review
This sprint review was a bit different than the previous ones, it differs because this is the last sprint. There-
fore, during the review, the increments of the sprint were shown with a common presentation where the
overall flow of the application was presented. From the three user stories that we began the sprint with only
two were accepted. The first one relates to the overall integration of the app, and the second relates to the
text-to-speech aspect of the app, which also required the integration to work correctly. The last story which
required a visual representation of the user’s progress within a section was not fulfilled. Which meant that
the user is not able to see how many exercises are done. Although the data is not visually presented in the
application it is still being saved.

10.6 Sprint Retrospective
Group retrospective
In the Sprint Retrospective, we discussed how time-pressured we were during the whole sprint. Because
there was a lot of stuff missing and how we were unable to follow our initial plan. We also had some
framework-related issues where we could not test our front-end properly. Another thing is not being able to
test the usability of the application on our target group, which is important to know if the application can
be used by waste pickers. Although this is something that we plan on doing on the users in Brazil during
the trip. The experience from previous sprints allowed us to be better at working with the other groups, we
were more proactive with each other and we were able to keep up with our work schedule. This meant that
we were able to fulfil the MVP that we set for ourselves.

46

Sprint #6

Shared retrospective
Like we did in Sprint #4 (see section 8.6), in the sixth sprint retrospectives we also did a collaborative
exercise with the other groups.

Written in collaboration with all groups

We began the sprint retrospective with an internal group discussion about Sprint #6. Afterwards, each group
presented their thoughts on this sprint. This included discussions about what did not go well, but also about
improvements from previous sprints.

• Sprint review: In the sprint review, it felt more like one product compared to the previous reviews, as
when we began showcasing the web application for the content creators, and afterwards, we presented
the shared work of the two mobile application groups together. Here we could also see the new course
created during the web presentation.

• Workflow: It has been a very stressful sprint. Not only did we want to try and get a working MVP
before usability testing in Brazil, but we also had to try and fix the issues that were presented from the
Static Code Analysis. We did have technical debt from previous sprints, which ideally should have been
continuously fixed, but at the beginning of the project, the focus was on implementing new features
and learning to work together in order to ensure a good product.

• Communication: The communication in this sprint were a lot better compared to previous sprints,
but there is still room for improvement.

Final collaborative retrospective
After the retrospective for sprint 6 we completed the development process with a final retrospective that
covered the whole project from beginning to end.

• Progress: One thing we discussed was how we as students had evolved since a similar project in the
3’rd semester. Here we had to work as a single group that solved a real-life problem for a company.
In 3’rd semester we had to spend a lot of time trying to figure out how to use the skills we learned
in courses such as system development. Whereas in this semester these skills were simpler to apply,
which was a great indication of our own development.

• Sprint zero: It was discussed that one way to start with a stronger foundation for common goals
and better communication would be with a sprint 0. This was not something we were aware of and
something that could be done before the end of sprint one. In sprint zero we should have not touched
any of the code, the focus should have been on communicating with the other groups and agree on a
common set of requirements based on the project we received and the wishes of the stakeholders and
PO.

47

Sprint #6

• Communication: One of the common topics throughout the development process was the lack of
communication. This includes communication among the three groups, but also communication
internally.
Each group’s sprint backlogs were not shared with the other two groups. This caused issues as we did
not always know what the other groups were working on. Especially in the beginning when we had
yet to establish a good communication flow.

The lack of communication led to issues where there were risks of groups working on similar
tasks, but there were also examples of different coding approaches in the same repository. In order
to make it easier for future developers the naming conventions and approaches should have been
discussed before we began the development.
But, in the last two sprints, the groups started to work more as one unit with one common goal. People
from different groups would start sitting together to fix common issues. Also, the communication
between the front-end and back-end became clearer. If there was something the front-end or back-end
needed from each other they would talk together about it to try and find a good solution.

• Cross-collaboration: In continuation of ‘Communication’. We did not have any good tools that could
help ease the process of working together across teams. This is of course one of the learning goals
for this project, and we did in the last three sprints have a weekly meeting with the Scrum Masters
from each team. But, one thing that was talked about was that we had hoped in the early part of the
development process to be introduced to a set of tools that might have been useful for working with
multiple teams on one project.

• PO: When the project first began, it felt as if the PO was learning his role along with us. Especially in
the first few sprints, we were still not clear about a lot of fundamental knowledge from agile, so we
had hoped that the PO could be of assistance. At the end of the third sprint, we had a guest lecturer
joining us for the sprint review. The guest lecture came with a lot of useful feedback, that helped us,
but also was of assistance to the PO. After this, the PO seemed to be more confident and aware of his
role. This along with our expanded agile knowledge made sprint reviews and sprint planning easier
to complete.

Another thing that was discussed in the retrospective was that we would have had great bene-
fits from the PO writing the user stories or setting clear sprint goals for each sprint. We wrote our own
user stories and for the first few sprints, there was no agreed-upon goal for what should be achieved.
This is one of the reasons why we started to accumulate technical debt.
It was sometimes not easy to get proper approval for the user stories we had written for each sprint
and at times it felt as if the PO was not aware of what was in the sprint backlog.

• Sprint review: Just as with the cross-communication, it was discussed that it would have been ben-
eficial to have learned how an actual sprint review is normally handled. There was confusion about
how to actually proceed with the sprint review, and it was not until the final sprint that it felt as if the
review was about one product and not three different products.

• Pipelines: It was not until the last two sprints that we learned about pipelines and Continuous Integra-
tion. It is normally considered good practice to create a pull request instead of merging code directly
into the main branch of the project. It was discussed that it would have been very beneficial for us if
we were provided with an option and guideline to set up a pipeline that forced us to do pull requests.

Overall there have been a lot of frustrations during the project for every group. There was a very steep
learning curve as we not only had to take over an existing project but also had to work together across
teams.
In the end, our way of working together still has room for improvement and the product may still have some
issues, but through the frustrations and failures, we experienced throughout the project we also learned
valuable skills that we could slowly start applying while working on the project.

End of collaboration

48

Part III

Testing & Evaluation

49

11 | Testing

11.1 Software Quality Management
In this section, we will talk about how we tested the quality of our software using a code analysis tool called
CodeScene.

CodeScene
To ensure and check the quality of our code we have used CodeScene to analyze our code and look for
potential risks.

The results were outstanding, in the figure below, we can see a map of the different parts of the code.

Figure 11.1: CodeScene report of the code health

The figure shows us that we have developed 4.178 lines of code and an average of 9.79 / 10 code health.
Whereas the worst performer out of all the files is a back-end-related file, which is not of the group’s concern.
Nevertheless, this gives us important information about which file could create issues for us in the future. In
general, though, we are pleased with the exceptionally high code health.

50

Testing

With CodeScene, we can also check the Code Churn, which means how frequently code has been deleted
and rewritten. The figure of this can be seen below:

Figure 11.2: CodeScene report of the code churn

With this, we can see which files required a lot of work, which we did not anticipate at the beginning of the
project. Many of the files are back-end related but there are few front-end files. Files such as EasyDynami-
cList.jsx component, which is utilized in the CourseView screen. We can see that it has changed a lot because
we were not sure how we should make it dynamically get data from the database. Therefore, the file was
using mocked data, to begin with. Once we got a clearer vision of how it should be structured, we rewrote
it. This happened a lot of times as we can see above, because its Code Churn is high.

SonarCube
Another tool for static code analysis is SonarCube, which we used to compare the initial state of the code to
our final code. Below, an overview of the initial state of the code is provided:

Figure 11.3: Initial state of the code base

51

Testing

The overview shows different interesting statistics, among others the technical debt, the test coverage of
the code base, and the amount of code smells, which means code that will be hard to maintain. However
it should be noted that SonarCube was not configured to check the coverage properly, so this number is
not really meaningful. Nonetheless, the technical debt of the repository was one day and four hours, and
over 200 code smells existed when the code was handed over. The following picture shows the result of the
SonarCube analysis on our final state of the code base:

Figure 11.4: Final state of the code base

Here it should be clear that we brought the technical debt down quite a bit to around six hours. Furthermore,
the number of code smells was reduced by over half. As a side note, the group found that the number of
bugs found by SonarCube can not be trusted when writing code in React Native. A lot of the so-called bugs
were implemented hooks that the SonarCube had a hard time understanding the concept of since the hook
could change state at runtime.

Figure 11.5: Statistic comparing initial state to final state of code

Above, a comparison of the initial code base (EducadoMobileAppMaster) and our final code base (Edu-
cadoMobileApp) is provided. Here, the numbers revolving around "code smells" change a bit, although the
amount of code smell is still around half in our final version of the code base. This is accomplished even
though the amount of lines of code is nearly tripled.

52

Testing

Lastly, a diagram of how the technical debt in the code base is distributed is shown.

Figure 11.6: Figure of the technical debt in the final state of code

The diagram shows the number of lines of code in relation to the technical debt for each file in the repository.
In particular, two large circles stand out, where the largest one is revolving around the "testStack"-file that
was used during development. The most interesting file that stands out is the one with the largest amount of
lines of code compared to the technical debt. This file is called "StorageService", which acts like the service
layers of the mobile side of the Educado application (see figure 4.1). This makes a lot of sense to us, as this
was the biggest dependency the group faced throughout the project. We multiple times experienced that we
needed something implemented in the service layer in order for the front-end to implement functionality,
but the service layer was not ready for that. We tried to communicate our needs to the responsible group,
but it ended up being a somewhat slow and agonising process. In the final sprints, however, when the groups
started working together more as one team instead of three, the front-end needs were easier implemented
as the task was completed through cooperation between team members of both groups.

11.2 Usability testing
During the project, the group discussed multiple times how it could make sense to perform usability testing
of the application. One key aspect that caused some frustration was the fact that we did not have any
opportunity to get in contact with the real end-users, the Brazilian waste pickers. We could still derive
features that the end-user would probably want based on the PO’s understanding of the problem domain,
however, the actual validation of these was somewhat troublesome to come up with a reasonable way of
doing.

The group discussed if performing the usability test on similar users to the waste pickers would be feasible,
but the criteria of being of low educational background, with limited ability to read and write limited the
field of possible candidates. At one point, elderly people or young children were on the table of possibilities,
if it would be possible to get in touch with someone that is struggling with literacy. However, due to several
issues, the group eventually decided to hold off on performing the test. Some issues were due to the state
of the application which was still being developed into a coherent state by the very last sprint of the project,
while other concerns revolved around the fact that even if we got in contact with similar users to the waste
pickers, there would still be significant differences. Among others, the fact that the waste pickers know a
limited amount of English would mean that the intuitive way of navigating through the application would
be different than the test subject that we would be able to perform the testing on.

53

Testing

In the end, the group wanted to perform the usability test, but only in a way that made sense. Because of
the reasons listed above, the conclusion ended up being that the test ought to be performed with some of the
actual Brazilian waste pickers if the test could be considered to be anything other than performance. Luckily,
two of the group members were enrolled in the trip to Brasilia planned by Aalborg University. Therefore, the
plan became to have the two group members perform the usability testing while visiting the waste pickers.
They will report the findings of the test back to Aalborg University in order for future generations of software
students to be able to make use of it.

The following usability test was developed by the group, for the purpose of performing it with waste pickers
in Brazil. First off, the test user should be asked some formal questions before the actual testing begin. These
include but are not limited to asking if the test may be recorded as well as the test user’s name. Afterwards,
the Educado application will be installed on the user’s phone if possible - alternatively, the user will use a
provided Android with the application preinstalled.

Following this, the user will be asked to perform several different tasks, each of which focuses on a specific
feature of the application. The tasks will be given as a case, where each case have a setup, something that the
user wants to do or achieve in the application, and an open-ended question so that the user has a somewhat
free interpretation of what to do. For each task, the group member that will act as an observer takes notes
about what behaviour and steps are taken in order to try to complete the given task, whether or not it has
been completed, as well as the time to complete it, if successful. An important thing to note is that the
following tasks will be done as a think-aloud test, where the user says aloud what he/she thinks at any given
time, what their conclusions about the task are, as well as any reasoning for doing what he/she is about to
do.

Tasks: Observations: Completed: Time to complete:
1) You want to access the
application. What do you do?
2) You want to have an overview of all
the available courses in the application.
What do you do?
3) You want to see the content of
a course. What do you do?
4) You want to try
another course. What do you do?
5) You decide that this course
looks interesting. How do you proceed?
6) You want to start
the course. What do you do?
7) You want to change what part
of the course, you are focusing on.
What do you do?
8) You want to get an overview
the course you are currently doing.
What do you do?
9) You want to see the
information the application has on you.
What do you do?
10) You do not want your account anymore.
What do you do?

Table 11.1: Usability test

54

Testing

When the test is actually being carried out, several obstacles might arise, which we have given some thought
to beforehand. A possible issue that could affect the testing is the possible language barrier that might occur
between the test user and the group members. It should be noted though, that the PO of Educado, Mateus
Halbe Torrés, will be attending the part of the trip to Brazil where the group will interact with the waste
pickers. Mateus is Portuguese- as well as English-speaking, so he could step in and act as a translator if
needed.

Furthermore, several aspects of the test user might affect the outcome of the testing. The understanding of
what it is to be a waste picker is only based on what the PO has told us. At one point he mentioned, that the
waste pickers were unlike anyone we have ever met since the closest waste picker in Denmark (a tin deposit
gatherer) would still be considered miles apart from the Brazilian one. In the worst-case scenario, the waste
pickers could prove unable to perform the testing due to issues that the group would have a hard time
predicting, such as the waste pickers’ ability to understand the given task, their ability to focus on the task at
hand, their ability to verbalise their thought process and so on. We hope to minimize this aspect, by having
the waste pickers speak in their native tongue while recording the test, which could then be transcribed
afterwards.

Lastly, there are some technical aspects to consider when performing a usability test on the other side of the
Earth. For once, the back-end should be deployed on a server closer to Brazil to make the content available
there. This will cost money, and therefore this responsibility lies outside of the group grasp.

Additionally, the group members that will travel to Brazil will need a way to get the application onto the
waste pickers phone, if possible. Currently, the plan is to have the application installed by entering developer
mode on their phone, giving access to install the Android Package Kit (APK) via a link to the application
stored in an AWS bucket in the cloud. The backup plan could be that the group members who will travel
to Brazil will use their own phone and hand it out when the test is ready to be performed, and help when
issues might arise. There might also be an option where we bring phones from the department to Brazil in
order to have something to perform the test on.

11.3 Snapshot testing
The purpose of a snapshot test is to output a textual form of the rendered component. The textual form is
human-readable which makes it easy for us to understand and look for potential bugs. This can be used to
ensure the code’s quality and test its behaviour. Besides this, we can also use snapshots to compare renders
of different iterations of the project.

We were able to only test one of the multiple screens that our application features, this is mostly framework
related and we were not able to have it function with everything else that our application offered. To do
snapshot testing we utilized a framework called Jest. Before we could even begin with the creation of the test
cases we would need to first begin with the configuration of the framework. In our case, the configuration
can be found in Appendix in listing A.1.

During the creation of our test cases for the screens, we would need to use multiple hooks and other stuff
such as asyncFunctions. To have those functional we needed to mock them using Jest which allows us to
mock external dependencies. The mocking can be seen in Appendix in listing A.2

Once we have those mocked we can begin creating our test cases. As mentioned before we could not test all
of our screens or components because they contained components that were not compatible with different
frameworks. The cases can be seen in Appendix in listing A.3.

55

Testing

The test gives a readable description of how the screen Explore is built. What are the different parameters
used to build this screen and show us the different components it is built with. This can be then used to
further enhance the understanding of what is happening behind the front-end, down to the code. A snippet
of the result can be seen below:

1 /// Jest Snapshot v1 , https :// goo.gl/fbAQLP
2
3 exports[`Testing if Explore renders 1`] = `
4 <View
5 style={
6 [
7 {
8 "backgroundColor": "#CFE9EF",
9 },

10 {
11 "flexBasis": "100%",
12 },
13 {
14 "display": "flex",
15 },
16]
17 }
18 >
19 <View
20 style ={
21 [
22 {
23 "flexBasis": "16.666667%",
24 },
25 {
26 "alignItems": "center",
27 "justifyContent": "center",
28 "paddingTop": 20,
29 },
30]
31 }
32 >

Listing 11.1: Snippet of Jest Test Results

The rest of the snapshot can be seen in Appendix in listing A.4

56

12 | Discussion
Throughout the project, it became evident that several issues affected the development process and frustra-
tion level. In the following, a general discussion about experiences made by the group will be provided after
which a section about the future development of the application will be presented.

The group went through several sprints, in the beginning, feeling frustrated about the process that we had to
follow when deriving user stories for the upcoming sprint. In the beginning, it felt like there was no common
goal for the three teams, which meant that the application as a whole evolved in different directions. For
instance, our group had a sprint focusing on gamification, while the other two groups focused on user
representation in the different areas of the application. This ended up impacting the possibility of actually
implementing the gamification elements that this group produced since it was only the front-end part of the
application that was ready for it.

During the project, it also became clear that a common Definition of Done would have been nice to commit
to before the project began. Not having one meant that the application as a whole, back-end and front-end,
did not end up being as cohesive as it could have been. For instance, a small example could be found in
the design of the different screens of the application, where the colour schema for the login screen does not
match the rest of the app. The reason for this was that another group was in charge of this screen, but the
two groups did not agree upon a common styling beforehand.

When the project concluded, we reflected on what it would take to have the application go into production.
Here, it became clear that the teams had developed a lot of technical debt, which they ideally would have
liked to fix before deploying. In the following section about future development, the group will make an
effort to account for some of the technical debt that relates to the front-end specifically.

Lastly, the group spend quite some time trying to get the local environment up and running, with an emulator
that could correctly display the application on a projector when presenting our increment during the sprint
review. We started only doing it on one or two laptops, but due to different technical aspects, it ended up
not being sufficient. If the group, or future generations of teams, was to start on the future development of
the application, it would be strongly advised to get this aspect of the development process done on all team
member’s laptops from the get-go.

12.1 Future development
Written in collaboration with all groups

In this section, an overview of the most apparent areas for the front-end side of the Educado application will
be provided. The areas that will be covered in the section revolve around:

• Gamification

• R2L

• Styling

• Technical debt

• Testing

• React Native

• Possible upcoming features

57

Discussion

Gamification
As mentioned earlier in the report as well as stated throughout several sprint goals proposed by the PO, the
application should have implemented gamification elements. During Sprint #3, the group even managed
to create some of these and, although hard-coded at the time, it was clearly something that both the group
as well as the PO would have liked to see implemented. Throughout several sprints, the group would have
been able to explore this design space even further, but this was simply not possible because of the fact that
gamification related to an actual user could not be identified on the back-end of the application, which was
first implemented in the very last sprint of the project. However, the group finds that this would be the first
and most vital area to further develop if given more time. Currently only a very slight hint of gamification can
be found on the "RightAnswerScreen", which the user sees if he/she answers correctly on an exercise. Here,
a star is "given" as a reward together with a text, encouraging the user to continue using the application. The
group has taken more elements into consideration, among which a leaderboard should be mentioned. At
the concept level, the board should only list the user’s known associates that also use the application, in an
effort to enable the user to make meaningful comparisons of progression. Furthermore, this indicates that a
design space to explore would be to implement a friend list feature in the application so that this relation can
be mapped in the back-end. Elements like achievements, and/or overall user progression were also on the
minds of the group. These, together with the leaderboard and friend list would in our points of view create
the foundation for a waste picker to want to come back and use the application again and again. Lastly, the
group wanted to create even stronger user retention in the application by possibly adding notifications that
would remind the user to use the app, or inform them that one of their friends just beat their score on the
leaderboard or similar events occurring in the application.

R2L
This area revolves around a concept that the group sought to apply through the development of the applica-
tion. As mentioned earlier in the report, the concept relies on short interactive sessions between the teacher
and the learner. Also, the interactions should be based as little on text as possible, which relates to what
we currently know about the waste pickers’ ability to read and write. Although the group made an effort
to keep the amount of text as low as possible, this proved to be difficult at times because of several issues.
We did manage to end up using a text-to-speech feature for the different possible answers to the exercises,
but since the application did end up with more text than we would have initially liked, this feature could be
implemented across all text in the application to further lessen the actual need for reading in the application.

Styling
Throughout the project, the different screens have undergone several design changes. Although our pro-
totypes were made as a starting point, the design changed due to different aspects, one of which was that
our understanding of the application and its functionalities evolved over time. In general, the group tried to
make a proof-of-concept of the design first, after which the design was iteratively improved upon. During
the later stages of the project, the group made an effort to standardize the styling by using the framework
tailwind-CSS and chose what we thought would be a nice and easy-to-use library. After working with the
library for several sprints, it is the group’s assessment that another styling framework ought to be considered
implemented instead if given more time. The reasons are plentiful, but one of the bigger ones is the fact
that a lot of the library does not work on Android, as the framework has been mostly developed to fit iOS.
Another reason is the fact that tailwind-CSS is deprecated and as such, we ended up using a mix of it and its
successor called native-wind.

Technical debt
When the group first started working on the code base, it soon became clear that the code base was using
deprecated libraries or versions of libraries. This meant that it took several weeks to get the code up and
running, and implied using a lot of "hacky" solutions such as, on purpose, rolling back versions of libraries
in order for it to work. Throughout the development process of our take on the application, we tried to
minimize the number of deprecated libraries, but several still exist. Therefore, this technical debt should be

58

Discussion

taken into account if further development on the application should be considered. Furthermore, the group
itself produced technical debt when developing. For instance, some implementations were made to work
instead of being the correct, clean and efficient way. Ideally, this debt should be sorted, if given the time.

Testing
The group performed several forms of testing, as mentioned earlier in the report. Since our focus is purely
front-end based, it made the most sense to implement usability testing compared to other aspects of testing
such as unit testing. However, because of the development process between the different groups, the appli-
cation was only ever really in a state to be tested in the very, very late part of the project. Furthermore, it
should be noted that the group did not have access to users that could imitate a Brazilian waste picker in
any meaningful capacity. Because of these two reasons, the group chose to hold off on doing the usability
testing before the end of the project, even though it was prepared as mentioned earlier in the report. After
the time frame of the project has ended, two members of the group will travel to Brazil, where they will
have the opportunity to carry out the usability testing with real end-users. Since this has not yet happened,
further improvements to the application could become viable after this testing has been done.

React Native
When we got access to the code base, it was written in React Native. Although we, based on recommenda-
tions from the former developers, did end up choosing to start the whole development of the front-end again
from scratch, the choice of programming language remained the same. While it proved to be doable to write
the application in React Native, several issues point to the fact that we maybe should have considered other
languages as well before making our decision. For instance, we multiple times experienced that a library
was not working because it was discontinued due to lack of maintenance. While we of course can not be
sure that the same would not occur if another programming language were used, maybe a more currently
chosen language like flutter could have made sense.

Possible upcoming features
As a result of us using an Agile framework while developing our project, we were regularly implementing
and brainstorming new features in the form of User Stories. While a fair amount of these features were
implemented, many were also dropped for one reason or another. This section will cover the more notable
features that were either not finished in time or dropped altogether before work ever began on them.

Adding additional exercise formats
When the group first started off developing, multiple different formats for how an exercise could look were
discussed. At that point in time, we went with just a single option, which is the one that is currently
implemented in the application. Here, there is a video as a learning input and four possible answers that
can be read aloud to the waste picker whenever he/she clicks on a button. However, when learning, not all
material will fit this structure well. For instance, the group briefly discussed a format with only two buttons
instead of four, or only an audio file instead of a video. There is probably a large design space to explore
here, which would make the use of the application more interesting in the long run, as the waster picker will
not get bored by the same structure for every single exercise.

Recommender system for courses
In its current state, the application can show all the courses that are available in the back-end database.
Furthermore, the group implemented a filter function that can sort the courses into a category such as
"Finance". However, although this gives the user the basic functionality of getting to an interesting course
easier, this could be assisted if a recommender system was implemented. The complexity of the system could
range from very simple, like showing courses that are in the same category as the one the user is currently
doing on top of the list, to more complex such as using Pearson correlation between users to find courses
that are similar users have liked. This is a somewhat large task, that, if implemented, should be given a lot
of time to develop well.

59

Discussion

Enabling profile pictures
Another possible feature that could be implemented is to enable the use of the phone’s camera while in the
application. At first, the use could primarily be to enable a user to take and add a profile picture to their
user profile. This would increase the feeling of relating to the application and would be able to enhance the
retention that the users will experience.

Adding additional accessibility
From the research that was done three years ago by the former project group[4], the waste pickers have low
to no writing and reading skills. Therefore, additional accessibility features should be implemented, if given
more time. For instance, the overview of a course ended up with a lot of text, which could prove hard to
navigate for the waste pickers. By adding features like text-to-speech across all text in the application, the
burden of having to be able to read would lessen.

Translate text in application
To make the design more easily understand the functions there is in the app the text could be translated
from English into Portuguese, such that the waste pickers who are able to read Portuguese will be able to
read what the buttons do.

Phone Number Authentication
When we were initially implementing our phone number registration system, considerations were made as
to whether to add an authentication system to verify that the phone number was valid. This system would
work by sending a text message containing a code to the phone number, which would then need to be typed
into the Educado app’s user interface to verify that the user was in possession of the phone number and had
typed it incorrectly. We looked into a few systems that made it possible to send text messages, but all of
these required us to set up API keys that would charge a small amount of money each time a message was
sent. This meant that we would either have to pay out of our own pockets while testing and implementing
this feature or that we would have to request funding from the university, which could potentially be a very
time-consuming process. We felt that this feature would not be necessary for what we wanted to accomplish
and when discussed with the PO, it was decided that it would be beyond the scope of the project.

Course progression
While course progression was successfully added and stored for each user in the database, this data is never
used in the mobile app. Optimally, the user interface would show the user’s progress in some way. This could
be represented by a progress bar in the course overview or some other way. This feature would give users
a better idea of which courses they have completed and which they are in the process of completing, which
could incentivize the completion of more courses, leading to a higher level of engagement.

Caching system
One of our initial goals with this project was to implement some sort of caching system that would automati-
cally download and store content from the application locally, such that users would not need to have entire
courses to consume at once. This feature ended up being scaled back to simply being able to manually down-
load and delete content, which is a little less user-friendly. A caching system could work by downloading
the first few exercises of a course when the user starts that course. This content would be stored locally for
some time until an algorithm would determine that the content could safely be deleted. With this feature,
users could spend less time worrying about storage space and manually downloading/deleting content, and
instead spend more time using the application for its intended purpose.

Notification System
A notification system would make it possible to send notifications to the user’s smartphone, such that they
will be notified of new content that is now available in the app, and tell them how they have progressed to
improve their motivation for completing the courses they have begun participating in.

60

Discussion

Application preferences
To better suit, the user’s needs and expectations of the app, a set of preferences could be implemented in
the application such that the user decides how the application should behave when using it. Examples of
preferences could be the opportunity to choose between a light theme and a dark theme, such that they do
not feel eye strain if they are using the application in a dark environment. Another example could be to turn
notifications off, such that they do not feel bothered by the application throughout the day.

Add animations to front-end
To make the application more user-friendly and fluid, it could feature more animations. Examples of anima-
tions could be an animation when the user opens the app, such that they feel the application is responsive
and is not frozen. Another example could be more animations when changing between different screens in
the app, such as going from the initial login screen to the register screen.

Reward system
To keep the users feeling more motivated to keep using the application and completing courses, a reward
system could be implemented. A reward system could include various badges for different achievements, this
could be badges for when they have proceeded in a course every day for a week, when they have completed
their first course, or when they have completed all courses in a specific category.

Profile screen
Additions to the profile screen could further improve the personalization of the user experience. They could
be able to add a biography to their user profile, such that they have a space to tell more about themselves to
other users. And they could be able to see their progress on the profile screen, such that it is easy to glance
over all the information in the application that is related to them at once. And lastly, they could be able to
edit their information such as their phone number, name, and password, in case they have changed since
they registered or they made a typo while entering them.

Restricted Routing
Currently, this feature has only been implemented back-end, but the implementation is still missing in the
front-end part of the application. It is therefore not possible to add the routing as it will cause the endpoint
it is added to, to not function for the application user.

Responsive front end
While using the mobile app on various devices among team members we experienced that the front end
would look a bit different on each of them. There were two main issues that were apparent while testing,
the first being that the lower button on the login- and register screens would be shifted up a bit once one of
the text fields was tapped and the keyboard opened. The second issue was that the two lower buttons on
the login- and register screens would have more space between them depending on the device’s screen.

End of collaboration

61

13 | Conclusion
Throughout the report, the group has described how educational content on the application can be delivered
to the Brazilian waste pickers by implementing different features like gamification and shaping the content
to fit an R2L approach.

The main goal for the project, and the semester overall, was to integrate each group’s work into a single
cohesive product, so that next year’s software students can develop further. We believe as a group, that we
have accomplished this. Both the front- and back-end do have a lot of technical debt, as is also described
in the discussion (see section 12), but even so, there is a link between the created courses on the web
application to the courses shown in the app, which would not be possible if the cohesiveness was not present.
The three groups also managed to make use of the Android phone’s local storage, so that the waste picker can
download a course while having WiFi so that they can consume it later when they might not have internet.
This was also a requirement from the PO and therefore important to the entirety of the project.

The toughest part of the project was the goal of having multiple groups work put together into a single
product. As it was the first time that any of us had tried not to create every piece of the puzzle, it took all
three groups a couple of sprints to get into a reasonable workflow. But once arriving at the last sprints of
the semester, the groups were more aligned and were able to work on assignments between groups more
efficiently and fluently. Had we found this connection sooner or had tried it before this project, there might
have been more things implemented throughout the application, but in the end, the overall main goal was
accomplished.

Throughout the different design and implementation phases, the group’s main focus was to make a simple,
user-friendly application, that the waste picker could easily navigate through, and minimise the number
of words present. Hence, we created a smooth design, where the importance of the exercise screen is
underlined by the implementation of gamification elements for the answer buttons and a simplistic interface
for the video element. To further assist the waste picker, the group implemented text-to-speech on the
buttons, so that the user could listen to the answers instead of reading them. As mentioned in the section
about the future development of the application (see section 12.1), a lot of interesting features that could
be implemented were found, if given additional time. Most of the features revolve around implementing
additional gamification elements throughout the entire application, and not just on the exercise screen, as
well as lowering the technical debt by cleaning up the code base.

Nonetheless, the group feels like the project’s outcome is successful, as we did manage to connect the front-
and back-end, while designing a user-friendly application that takes into account the limitations of the user.
We believe that the project as a whole has become a better foundation for future development than what we
handed over to us at the beginning of the semester.

62

Bibliography
1. Accessed: 05/12/2022, 2022,

(https://www.statista.com/statistics/530481/largest-dump-sites-worldwide/).

2. K. Vasarhelyi, Environmental Center, Accessed: 05/12/2022,
(https://www.colorado.edu/ecenter/2021/04/15/hidden-damage-landfills) (2021).

3. D. Britze, R. N. Nielsen, “Mobile Education Platform - Smart Caching Learning Materials” (Aalborg
University, 2019), (https://projekter.aau.dk/projekter/da/studentthesis/mobile-
education-platform(aebca7a9-9b25-4081-89ea-271477091e93).html).

4. D. Britze, J. V. Jensen, “Digital learning platform for waste-pickers in Brazil”, Bachelor Thesis (Aalborg
University, 2021),
(https://projekter.aau.dk/projekter/da/studentthesis/digital-laeringsplatform-for-
skraldere-i-brasilien(c4d83ea9-c4f6-4f82-882a-d42fdec142c8).html).

5. The Agile Manefesto, 2022, (https://agilemanifesto.org/principles.html).

6. What is Scrum?, 2022, (https://www.scrum.org/resources/what-is-scrum/).

7. [Myth Busting]What is A User Story?, 2022,
(https://www.scrum.org/resources/blog/myth-busting-what-user-story).

8. User Stories are Needs Described from the Business Perspective, 2022,
(https://www.scrum.org/resources/blog/user-stories-are-needs-described-business-
perspectivey).

9. Scaling Scrum with Nexus, (2021; https://www.scrum.org/resources/scaling-scrum).

10. F. Ugur-Erdogmus, R. Çakır,
(https://journals.sagepub.com/doi/abs/10.1177/07356331211065679) (2022).

11. S. C. Paula Bitrian Isabel Buil,
(https://www.sciencedirect.com/science/article/pii/S0148296321002666) (2022).

12. L. F. m. Tong Wang, (https://www.jmir.org/2021/8/e24546/) (2021).

13. D. Rose, Accessed: 13/12/2022, (https://camphillipss.eq.edu.au/curriculum/subjects-and-
programs/reading-to-learn-r2-l) (2022).

14. Dualingo website, 2022, (https://www.duolingo.com/).

15. (https://en.wikipedia.org/wiki/TikTok).

63

https://www.statista.com/statistics/530481/largest-dump-sites-worldwide/
https://www.colorado.edu/ecenter/2021/04/15/hidden-damage-landfills
https://projekter.aau.dk/projekter/da/studentthesis/mobile-education-platform(aebca7a9-9b25-4081-89ea-271477091e93).html
https://projekter.aau.dk/projekter/da/studentthesis/mobile-education-platform(aebca7a9-9b25-4081-89ea-271477091e93).html
https://projekter.aau.dk/projekter/da/studentthesis/digital-laeringsplatform-for-skraldere-i-brasilien(c4d83ea9-c4f6-4f82-882a-d42fdec142c8).html
https://projekter.aau.dk/projekter/da/studentthesis/digital-laeringsplatform-for-skraldere-i-brasilien(c4d83ea9-c4f6-4f82-882a-d42fdec142c8).html
https://agilemanifesto.org/principles.html
https://www.scrum.org/resources/what-is-scrum/
https://www.scrum.org/resources/blog/myth-busting-what-user-story
https://www.scrum.org/resources/blog/user-stories-are-needs-described-business-perspectivey
https://www.scrum.org/resources/blog/user-stories-are-needs-described-business-perspectivey
https://www.scrum.org/resources/scaling-scrum
https://journals.sagepub.com/doi/abs/10.1177/07356331211065679
https://www.sciencedirect.com/science/article/pii/S0148296321002666
https://www.jmir.org/2021/8/e24546/
https://camphillipss.eq.edu.au/curriculum/subjects-and-programs/reading-to-learn-r2-l
https://camphillipss.eq.edu.au/curriculum/subjects-and-programs/reading-to-learn-r2-l
https://www.duolingo.com/
https://en.wikipedia.org/wiki/TikTok

16. Expo speech documentation, Accessed: 20/12/2022, 2022,
(https://docs.expo.dev/versions/latest/sdk/speech/).

64

https://docs.expo.dev/versions/latest/sdk/speech/

Part IV

Appendix

65

A | Testing

A.1 Snapshot Code snippets
1 //** @type {import('ts-jest ').JestConfigWithTsJest} */
2 module.exports = {
3 preset: 'jest -expo',
4 testEnvironment: 'node',
5 transform: {
6 '^.+\\. ts?$': 'ts -jest',
7 "^.+\\.(js|jsx)$": "babel -jest",
8 }, moduleFileExtensions: [
9 'ts',

10 'tsx',
11 'js',
12 'jsx',
13 'json',
14 'node',
15],
16 setupFiles: [
17 "./ jestSetup.js"
18],
19 transformIgnorePatterns: ["node_modules /?!(@expo -google -fonts|expo_font)"],
20 globals: {
21 "__DEV__": true
22 },
23 moduleNameMapper: {
24 "expo -font": require.resolve('expo -font'),
25 }
26 };

Listing A.1: Jest Config

1 /import React from "react"
2 import { render , screen } from "@testing -library/react -native"
3 import Explore from "../../ screens/explore/Explore"
4 import { expect , test } from "@jest/globals"
5 import { useNavigation } from "@react -navigation/native"
6 import { useRoute } from "@react -navigation/native"
7
8 import { Animated } from 'react -native ';
9 jest.mock('@react -native -async -storage/async -storage ', () =>

10 require('@react -native -async -storage/async -storage/jest/async -storage -mock')
11);
12 jest.mock('react -native -reanimated ', () => {
13 const Reanimated = require('react -native -reanimated/mock');
14 Reanimated.default.call = () => { };
15
16 return Reanimated;
17 });
18 jest.mock('react -native/Libraries/Animated/NativeAnimatedHelper ');
19 const mockedUsedNavigate = jest.fn();
20 const mockedUseRoute = jest.fn();
21 jest.mock('@react -navigation/native ', () => ({
22 ... jest.requireActual('@react -navigation/native '),
23 useNavigation: () => mockedUsedNavigate ,
24 useRoute: () => mockedUseRoute ,
25 useParams: () => ({
26 courseId: 0,
27 sectionId: 0,
28 }),
29 }))
30 const mockPlatform = OS => {
31 jest.resetModules ();
32 jest.doMock("react -native/Libraries/Utilities/Platform", () => ({ OS, select: objs =>

objs[OS] }));
33 };

66

34 jest.useRealTimers ()

Listing A.2: Jest Mocks

1 /it("my test on Android", () => {
2 mockPlatform("android");
3 });
4 test('Testing if Explore renders ', () => {
5 render(<Explore />);
6 expect(screen.toJSON ()).toMatchSnapshot ();
7 });

Listing A.3: Jest Test Cases

1 /// Jest Snapshot v1 , https :// goo.gl/fbAQLP
2
3 exports[`Testing if Explore renders 1`] = `
4 <View
5 style={
6 [
7 {
8 "backgroundColor": "#CFE9EF",
9 },

10 {
11 "flexBasis": "100%",
12 },
13 {
14 "display": "flex",
15 },
16]
17 }
18 >
19 <View
20 style ={
21 [
22 {
23 "flexBasis": "16.666667%",
24 },
25 {
26 "alignItems": "center",
27 "justifyContent": "center",
28 "paddingTop": 20,
29 },
30]
31 }
32 >
33 <Text
34 style={
35 [
36 {
37 "color": "#4b5563",
38 },
39 {
40 "fontFamily": "VarelaRound_400Regular",
41 "fontSize": 40,
42 },
43]
44 }
45 >
46 Educado
47 </Text >
48 </View >
49 <View
50 style ={
51 [
52 {
53 "width": "91.666667%",
54 },
55 {
56 "alignSelf": "center",

67

57 },
58 {
59 "paddingBottom": 16,
60 },
61 {
62 "elevation": 15,
63 "zIndex": 15,
64 },
65]
66 }
67 >
68 <View >
69 <View
70 accessible ={true}
71 collapsable ={false}
72 focusable ={true}
73 onClick ={[Function]}
74 onResponderGrant ={[Function]}
75 onResponderMove ={[Function]}
76 onResponderRelease ={[Function]}
77 onResponderTerminate ={[Function]}
78 onResponderTerminationRequest ={[Function]}
79 onStartShouldSetResponder ={[Function]}
80 style ={
81 {
82 "borderColor": "gray",
83 "borderRadius": 10,
84 "borderWidth": 1,
85 "flexDirection": "row",
86 "justifyContent": "space -between",
87 "opacity": 1,
88 "paddingHorizontal": 20,
89 "paddingVertical": 12,
90 }
91 }
92 >
93 <Text
94 style={
95 [
96 {
97 "fontFamily": undefined ,
98 },
99 undefined ,

100]
101 }
102 >
103 Filter by
104 </Text >
105 <Image
106 resizeMode="contain"
107 source ={1}
108 style={
109 {
110 "height": 20,
111 "width": 20,
112 }
113 }
114 />
115 </View >
116 </View >
117 </View >
118 <RCTScrollView >
119 <View >
120 <View
121 style ={
122 [
123 {
124 "flexWrap": "wrap",
125 },
126 {

68

127 "flexDirection": "row",
128 },
129 {
130 "flexBasis": "0%",
131 "flexGrow": 1,
132 "flexShrink": 1,
133 },
134 {
135 "justifyContent": "space -evenly",
136 },
137]
138 }
139 />
140 </View >
141 </RCTScrollView >
142 </View >
143 `;

Listing A.4: Jest Test Results

69

	english title page
	I Introduction
	Background
	Important concepts
	Rich Picture
	Initial state of the Educado project
	Class Diagram of the Data Model

	Prerequisites
	Limitations
	Gamification
	Reading2Learn (R2L)

	II Sprints
	Introduction to sprints
	Combined User Stories Diagram
	Definition of Done

	System Architecture
	General overview
	Mobile app overview
	Back-end overview

	Sprint #1
	User Stories
	Sprint management
	Cross-team coordination
	Design & Implementation
	Sprint Review
	Sprint Retrospective

	Sprint #2
	User Stories
	Sprint management
	Cross-team coordination
	Design & Implementation
	Sprint Review
	Sprint Retrospective

	Sprint #3
	User Stories
	Sprint management
	Cross-team coordination
	Design & Implementation
	Sprint Review
	Sprint Retrospective

	Sprint #4
	User Stories
	Sprint management
	Cross-team coordination
	Design & Implementation
	Sprint Review
	Sprint Retrospective

	Sprint #5
	User Stories
	Sprint management
	Cross-team coordination
	Design & Implementation
	Sprint Review
	Sprint Retrospective

	Sprint #6
	User Stories
	Sprint management
	Cross-team coordination
	Design & Implementation
	Sprint Review
	Sprint Retrospective

	III Testing & Evaluation
	Testing
	Software Quality Management
	Usability testing
	Snapshot testing

	Discussion
	Future development

	Conclusion

	IV Appendix
	Testing
	Snapshot Code snippets

