
Mobile Education Platform
Smart Caching Learning Materials

Project report

P4 - GR452

Aalborg University
Internet Technologies and Computer Systems



Internet Technologies and Computer
Systems

Aalborg University
http://www.aau.dk/

Title:
Mobile Education Platform

Theme:
Embedded Real Time Systems

Project Period:
Spring semester 2019

Project Group:
GR452

Participant(s):
Daniel Brtize
Robert Nedergaard Nielsen

Supervisor(s):
Per Printz Madsen

Copies: 4

Page Numbers: 108

Date of Completion:
May 28, 2019

Abstract:

This report presents a perspective on
how to work with the UN Sustain-
able Development Goals within IT. The
project is a collaboration between stu-
dents from Brazil and Denmark, with
the goal to create a system cable of
providing course content to Brazilian
waste pickers even with erratic mobile
coverage. Starting by examining the
terms for the project which will pro-
vide a base for the initial concept. The
possibilities for developing this con-
cept is then examined and end up as
an implementation. This implemen-
tation is then compared to the estab-
lished requirements and a plan for fur-
ther development is presented.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

http://www.aau.dk/


Abstract

Denne rapport præsenterer et perspektiv på hvordan man kan arbejde med FN’s
verdens mål inden for IT. Projektet er et samarbejde mellem studerende fra Brasilien
og Danmark, med formål at lave et IT-system, der kan levere kursusmateriale
til brasilianske skraldere på trods af den sporadiske adgang til mobildata. Først
er vilkårene for projektet undersøgt hvilket munder ud i en problemformulering
som er grundlaget for det initierende koncept. Mulighederne for udviklingen af
dette koncept bliver undersøgt hvilket munder ud i en implementering som afs-
lutningsvis bliver sammenlignet med de opstillede krav. Denne implementering
opfylder ca. 70% af kravne opstillet. På baggrund af de manglende opstillede krav
opstilles videruviklings punkter.

ii



Contents

1 Introduction 2
1.1 Problem identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Initiating problem statement . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Problem examination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Field research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Brazilian phone plans . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 International context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.1 Desk research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 International collaboration . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Initial concept 14
2.1 Concept explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Existing solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Smartphone application . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Subsidiary conclusion . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Green shoots project . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Technical analysis 20
3.1 Moodle scraper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 ETags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 File database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.3 Subsidiary conclusion . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Smartphone Application . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.1 Operating system selection . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Android API level . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.3 User identification . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.4 Moodle courses . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.5 Data logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.6 Internet connectivity . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.7 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.8 Subsidiary conclusion . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Caching server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.1 Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

iii



Contents iv

3.3.2 Smart caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.3 Subsidiary conclusion . . . . . . . . . . . . . . . . . . . . . . . 39

4 Requirement specification 41
4.1 Summary of conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Requirement specification . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Requirements moodle scraper . . . . . . . . . . . . . . . . . . 43
4.2.2 Requirements caching server . . . . . . . . . . . . . . . . . . . 43
4.2.3 Requirements smartphone application . . . . . . . . . . . . . 43

4.3 Partial conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Implementation 45
5.1 Programming philosophy . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.1 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1.2 Code documentation . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Moodle scraper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.1 Scraping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.2 Downloading and storing files . . . . . . . . . . . . . . . . . . 49
5.2.3 Subsidiary conclusion . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Database implementation . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.1 User tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.2 Course tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.3 Subsidiary conclusion . . . . . . . . . . . . . . . . . . . . . . . 58

5.4 Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.4.1 Subsidiary conclusion . . . . . . . . . . . . . . . . . . . . . . . 60

5.5 App . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.5.1 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.5.2 Basic navigation . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.5.3 User identification . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.5.4 Shared Preferences . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.5.5 Retrieving the file data . . . . . . . . . . . . . . . . . . . . . . . 67
5.5.6 Downloading and saving files . . . . . . . . . . . . . . . . . . 69
5.5.7 Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.5.8 Course facilitation . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.5.9 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.5.10 Subsidiary conclusion . . . . . . . . . . . . . . . . . . . . . . . 72

5.6 Partial conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.6.1 Requirements met . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 Conclusion 77
6.1 Future development . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



Contents v

7 Reflection 79
7.1 International collaboration . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.1.1 Compared with previous experience . . . . . . . . . . . . . . 80
7.2 Internal collaboration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.4 Reflection conclusion table . . . . . . . . . . . . . . . . . . . . . . . . . 83

Bibliography 85

Appendices 89
.1 Field research questions . . . . . . . . . . . . . . . . . . . . . . . . . . 91
.2 Field research interview . . . . . . . . . . . . . . . . . . . . . . . . . . 92
.3 Moodle scraper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

.3.1 Moodle scraper - main . . . . . . . . . . . . . . . . . . . . . . . 96

.3.2 Moodle scraper - files . . . . . . . . . . . . . . . . . . . . . . . 98

.3.3 Moodle scraper - courses . . . . . . . . . . . . . . . . . . . . . 100
.4 PHP-scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

.4.1 Register user . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

.4.2 User login . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

.4.3 DbOperations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

.4.4 DbConnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

.4.5 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



Todo list

1



1 Introduction

The way Brazil handles their waste is shifting, this results in the closure of numer-
ous dump sites[2]. This has lead to a challenge, wherein a lot of people who used
to make a living at the dump sites by scavenging the trash for recyclable materi-
als, commonly referred to as waste pickers[26], are left without a stable source of
income.

This introduction serves the purpose of creating an overview of the challenges
of these waste pickers, and if an IT project can help solve it. To do so a problem
identification stage is commenced, highlighting the problems the Brazilian waste
pickers face. From this problem identification, a initiating problem statement is
generated, allowing for an in depth problem examination. In order to examine this
problem, both field and desk research is conducted. Since this case if very specific
to the waste pickers special focus is given towards different aspects of the waste
pickers problems related to this project. This includes examining both their condi-
tions trough an interview during field research and trough desk research, looking
into how the United Nations(UN)’ Sustainable Development Goals(SDGs)[31] are
part of this project. Furthermore an examination of smartphones, their adoption
rates, coverage and the waste pickers ability to use them is examined. Before con-
cluding the international context of the project is taken into account, and a broader
examination of similar problems exists around the world and if a similar imple-
mentation could help in these other contexts as well. Lastly an overview of the
international project members is given, to create an overview of the different par-
ties involved and their perspectives. With this initial research stage completed,
a problem statement is made, determining the topics and scope of the research
needed to be done.

2



1.1. Problem identification 3

Figure 1.1: Waste pickers working at the new facilities

To help these waste pickers the Brazilian government created some central re-
cycling centers, where they hire the waste pickers to sort the waste under better
conditions. Effectively, this means that they are contracted by the municipalities
and get paid on a weekly or monthly basis as opposed to daily as they are accus-
tomed to. Most of these people do not have a basic education[8] and as such they
have limited knowledge on mathematics and subsequently financial management,
see the interview in Appendix .1.

In order for them to better understand handling monthly finance, they need
knowledge of basic mathematics such as addition and division. This lead to the
initiating problem statements, see Section 1.2. However before arriving at the initial
problem statement, the pre-project problem identification process is presented.

1.1 Problem identification

Originally, the idea of creating a framework for learning was developed during a
summer school held in Brasília, Brazil during August 2018.

The goal of this summer school was to initiate the collaboration between Uni-
versidade de Brasilia(UnB) and Aalborg University(AAU). The goal of this collab-
oration is to work with and help solve part of the United UN’ SDGs. Another part
of the goal is to create project proposals that the students from AAU could bring
back home and use as a semester project.



1.2. Initiating problem statement 4

The proposals that were developed ended up not fitting into the curriculum of
the danish participants and as a consequence of this, the projects where forced to
be worked on as extracurricular activities. The issue with spare time projects, is
that it is hard for students to prioritize compared to their own studies. Beyond this,
there is not any obligation to do any work. With these two factors it was quickly
found that projects will suffer and ultimately end up in a total stand-still. That was
what happened to the original education project, working with creating a system
that could deliver mathematics tuition to students in primary schools, much like
the Green Shoots project, described later on in Section 1.5.

After the initial project died due to a lack of communication which lead to a lack
of motivation as well, it was decided that it should be attempted, to see whether it
was possible to get it going again by meeting up to talk about the progress already
done and how to scope the project so that it fit into the curriculum of the AAU
students.

During the second expedition, Global Students SDG Summit, in January 2019,
the Brazilian professor João Mello, see Section 1.5 suggested that the target group
could be the waste pickers mentioned in Chapter 1, because it would narrow down
the target group and give the ability to make the project more concrete.

With the understanding of the origin of the project, as well as having uncovered
a perspective for this project, an initial problem statement is made

1.2 Initiating problem statement

How can a system helping the Brazilian waste pickers gain knowledge on mathematics and
financial management be build?

1.3 Problem examination

After having done research to identify issues within Brazil that this group might
be able to help alleviate, examination of the problem defined in the initial prob-
lem statement in Section 1.2 can begin. Firstly. the field research conducted in
collaboration with Grupo Gestão [11] and students from techno anthropology, see
Section 1.5, during the Global Students SDG Summit is examined. In this field
research an interview of the Brazilian waste pickers is conducted to better under-
stand their situation.

With the field research completed, the broader perspective of the international
context is explored. As this project aims to help in solving part of the SDGs,
the goals themselves and how this project attempts to help it is highlighted. To
specify the issue to smartphones in other locations, an examination of smartphone



1.3. Problem examination 5

adoption rates in emerging economies is given, to examine whether or not this
project could potentially be modified to different parts of the world. Lastly the
international collaboration highlighting the different project members is given, in
order to showcase the different perspectives both professional and cultural.

1.3.1 Field research

To get an insight into the lives and needs of our target group some field research
were done during the Students SDG Summit. This information will be used as
an offset for the final problem statement, but also as input to the requirement
specification.

As this is an interdisciplinary project the knowledge of the techno anthropology
students can be used to generate the questions that the waste pickers are asked.
These questions will focus on how the life as a waste picker changed after the
closure of the dump site, their education and the education they are offered as a
part of the job that Serviço de Limpeza Urbana do Distrito Federal (SLU)[9] hired
them for.

To establish an understanding of the actuality of the problem some of the an-
swers are highlighted below, a transcription of the complete interview can be found
in Appendix .2, the interview is done by our local collaboration partner Matheus
Halbe from Grupo Gestão, since the waste pickers does not speak English.

Firstly, knowledge about how the income of the waste pickers changed after
the closure is needed, in order to see how the closure affected them.

Mateus Halbe: So, let’s start. We see things are better than before.

Waste picker: No, things are not better than before.

Mateus Halbe: Why?

Waste picker: Because before we had money.

Mateus Halbe: Are you making less money today?

Manager of administration: What is improved today in infrastructure, or space to work.
The point of before they gained more is that before they worked individually then it
was a war for the garbage, because the one that reached first would have property of
garbage. Now at the Triage Center everyone works and the whole amount of revenue
is divided. And who works more compared to other people ends up feeling hurt. So
they think here is not better. He works a lot here and works a little and receives less
here.

This quotation from the interview shows that the waste pickers earn less after
the closure of the dump site. Which means that the economic situation have not



1.3. Problem examination 6

been improved due to the closure, this can also be seen in quote bellow, however
the work environment has improved.

Waste picker: Most people here have already been through this extremely difficult finan-
cial situation, and some are still through. There are months here that we need to help
each other, otherwise it is very difficult.

To understand how bad the salary is, the waste pickers are asked how much
the earn each month, which is R$ 1000 if it is a good month and they participate in
the courses from SLU. If you compare this to the minimum wage in Brazil, which is
R$954[6] it is only a bit more than that, however if you compare it with the average
wage which is R$2270[40], then it is easily seen that the waste pickers does not
have much money to work with.

Mateus Halbe: How much do you get here?

Waste picker: With the benefit payed for the participation in the classes, R$ 1000. R$360
from the participation in the course.

Since the idea is to use technology to improve the life of the waste pickers it is
needed to know to which grade they have access to internet, so they are asked to
show their phones. Based on the phones that was shown the conclusions is that
they are pretty good. During the research trip, it was noticed that most people
used WhatsApp. To see how they used it, Maria was asked about how she use the
application.

Mateus Halbe: Maria, how do you talk in the WhatsApp? you just listen to audio, is
this?

Maria: Yes. I listen to audio and record the audio.

This highlights that content such as videos or sound is important, as the waste
pickers might not be able to read the content, this leads to another possible prob-
lem, data use as these file types are larger. With this understanding of how the
waste pickers use their phones and their salary an examination of the Brazilian
phone plans is done to understand how much data the waste pickers have avail-
able.

1.3.2 Brazilian phone plans

According to the Brazilian telecommunications association, the largest phone plan
provider is Vivo[35]. Looking at their "regular" plans, they start at around R$229,99[42].
On a salary of R$700 this would be a high percentage of their wage to spend on



1.4. International context 7

a phone subscription. However as it turns out, Vivo provides relatively tiny pack-
ages for a lot smaller fee[41]. The cheapest of these plans, which only provides
500MB of data is only R$36 per month[41]. The thing of note with these plans is
that they all come with unlimited data for WhatsApp. Without having it confirmed
by the waste pickers. It is assumed that since many of them where found to use
WhatsApp, that they use plans similar to these. These plans however have very
limited data outside of WhatsApp, and in order to be as non intrusive as possible,
the application made in this project must therefore use as little cellular data as
possible.

Having completed the interview process, the international context of this project
as well as desk research is done.

1.4 International context

With the answers from the interview concluded upon, it is important to recognize
the international context wherein this project exists. Firstly the SDGs concerning
education are examined, and whether or not the project has potential to help is
evaluated. To further broaden the project perspective to a wider global context,
subjects such as smartphone adoption rates in emerging economies are examined.
This will help see if a more generalized version of this project could potentially be
implemented on a larger scale.

Since a vital part of this project is the internet connectivity on the Brazilian
waste pickers smartphones, a look into the telecommunication infrastructure in
emerging economies is done. To examine if this part of the system has potential to
be is useful in a broader global context.

Lastly an overview of the international partners for this project is given, clar-
ifying the active participants and cooperation partners. With this international
context given, the problem statement based on both the field and desk research
can be provided.

1.4.1 Desk research

This desk research phase seeks to cover any holes in the field research conducted
in Brazil. Beyond that it also seeks to broaden the perspective of the project into
a larger international context. Firstly all problems found during the field research
are backed up using reliable sources. Any arguments wherein local desk research
in Denmark provides insufficient evidence, the Brazilian cooperators are used as
sources.



1.4. International context 8

1.4.1.1 Sustainable Development Goals

The UN have compiled several SDGs in order to help improve our world or as they
describe it:

The Sustainable Development Goals are a call for action by all countries – poor, rich
and middle-income – to promote prosperity while protecting the planet. They recognize
that ending poverty must go hand-in-hand with strategies that build economic growth
and address a range of social needs including education, health, social protection, and job
opportunities, while tackling climate change and environmental protection[31].

The focus of this project is directly set to help with goal number four, Education.
While the scope of this project is purely to help the Brazilian waste pickers, a more
generalized system could in theory be used on a larger scale. Take for example
target one in goal number four:

By 2030, ensure that all girls and boys complete free, equitable and quality primary and
secondary education leading to relevant and Goal-4 effective learning outcomes[30].

By providing the smartphone application for free, this could help to achieve the
this goal. Beyond that, further development can lead to more versions specialized
for different parts of the world. A requirement for this to be viable however, is
that the people in need of this education have access to smartphones. Therefore an
examination of smartphone adoption rates in developing countries is done.

1.4.1.2 Smartphone adoption rates

To gain insight into smartphone adoption rates in emerging economies, several
statistics done by the Pew Research Center are used[34][28]. On Figure 1.2 the
smartphone adoption rates of advanced and emerging economies are shown.



1.4. International context 9

Uses the internet

Own a smartphone

60

45

90

76

Amount in %

Emerging economies Advanced economies

Figure 1.2: Mobile and internet use in advanced and emerging economies[28]

An important thing to note is that Brazil is part of the emerging economies.
However it can be seen that as of 2018 even in emerging economies, almost half
own a smartphone. While this means that many people can be reached with a
smartphone application, considerations must be made to if the people who own
smartphones also are the target demographic for this project.

It could be argued that the people who are in the most need of the base edu-
cation system are those to poor to afford smartphones. While it is impossible to
determine on a global scale, based on both observations and the interview con-
ducted during field research, see Section 1.3.1, the waste pickers almost all had
smartphones.

This is further supported by a research showing that 85% of Brazilians aged 18-
34 own a smartphone as of 2018 see Figure 1.2. While current statistics are good,
they cannot provide an overview of the growth or decline of smartphone adoption
rates in all emerging economies. To gain an overview of this, a second Pew re-
search paper is used[28]. On figure Figure 1.3 the growth of smartphone adoption
percentage between 2015 and 2018 are compared, in three emerging economies one
from each continent.



1.4. International context 10

2015 2018

20

40

60

80

16

32

61

85

A
m

ou
nt

in
%

Brazil

50+ 18-34

2015 2018

20

40

60

20

35

46

73

A
m

ou
nt

in
%

South Africa

50+ 18-34

2015 2018

20

40

60

80

8

27
31

74

A
m

ou
nt

in
%

Philippines

50+ 18-34

Figure 1.3: Smartphone adoption rate growth in emerging economies[28]

As can be seen in Figure 1.3, there is global trend of significant increase in
smartphone ownership. If this trend continues, then a smartphone application to
help educate people and improve their financial skills has potential to reach many
people. The article also concludes the following:

Smartphone ownership rates have skyrocketed in many countries since 2013. This
includes increases of over 25 percentage points among the total population in large emerging
economies such as Turkey (+42 points), Malaysia (+34), Chile (+26) and Brazil (+26)[28].

Again showcasing the fact that smartphones are beginning to become more
and more widespread even among traditionally poorer communities. However
the question also stands if the issue with erratic internet connectivity is as big a
concern in other developing countries. To find out about this an examination of
telecommunication infrastructure in developing countries is done.

1.4.1.3 Telecommunication infrastructure

Similar to the research on smartphone adoption rates, the research on telecommu-
nication is based of studies done by the pew research institute[4]. When it comes
to telecommunication infrastructure, it must be considered that even in countries
with stable cellular network infrastructure, the data rate might be to high for the
target subjects of this application. This is the issue observed from the Brazilian
waste pickers.

The graph shown on Figure 1.2 shows 60% of adults in emerging economies
uses the internet. This is 15% higher than the amount of smartphone users. The
people with internet access is also increasing [22]. More so the amount of internet
users is growing from 1 billion in 2005 to almost 4 billion in 2018[37].

Overall this means that the amount of people with internet access is very much
increasing alongside the amount of smartphone users. However making a system
that works alongside caching is still a sensible choice as it allows for everyone who



1.5. International collaboration 11

can get to free internet access to use the system, further decreasing the barrier of
entry.

Figure 1.4: Vivo coverage map[33], darker color means better connection

It can be seen on Figure 1.4 that the major cities in Brazil all seem to have
4G connectivity, but moving further inland coverage becomes much more sparse.
While this means the telecommunications infrastructure in Brazil in densely pop-
ulated areas should be usable, the issue of low amount data in data plans as de-
scribed in Section 1.3.2 means, that in this project scope, the Brazilian waste pickers
must be seen as not having a functional data connection.

Having examined the telecommunication infrastructure, the cooperation part-
ners for this project is listed.

1.5 International collaboration

Having completed the initial desk research phase, it becomes necessary to recog-
nize the context this project is in. More specifically the fact that this project is
part of a major cooperation between different groups. Accordingly, this section



1.5. International collaboration 12

will list all the collaboration partners and what their role will be in this project.
As mentioned earlier this is a interdisciplinary project which means that not only
people studying computer engineering will be participating. This will be a joint
venture together with people who studies techno anthropology and Production
engineering, an overview of the participating students can be seen in Table 1.1.

Denmark
Name Field of study Semester

Daniel Britze Computer engineering 4th

Peter Lundgaard Techno anthropology 8th

Robert Nielsen Computer engineering 4th

Brazil
Name Field of study Semester

João Mello’s subjects Production engineering TBD

Matheus Halbe Production engineering 9th

Table 1.1: Table containing students participating in the project

This project will also be done in collaboration with SLU, Christian Hundborg
Liboriussen(Christian) from the Green Shoots-project and Grupo Gestão as men-
tioned before.

SLU is the recycling waste management organization that oversees the closure
of dump sites, and the creation of waste management facilities where waste work-
ers sort recyclable materials from non-recyclable materials. The goal is to develop
this system for SLU to use, so that they can offer education to more waste pickers
and track more efficient whether they actually learn something. The collaboration
with this organization will also facilitate the contact and dialogue with the waste
pickers, which is needed to create a system that fit their needs.

Christian from the Green Shoots-project has extensive experience in creating
IT solutions in a somewhat similar educational setting in South Africa, wherein
internet connectivity is erratic[5]. In his project, his group created a system ca-
pable of synchronizing courses and data from a local server to schools in rural
areas of Africa. This made the non-governmental organization (NGO)[32], Green
Shoots[21] able to provide their education to even more schools. The system that
will be developed, will have some similarities with what he did and his experience
within this field, will aid the project.

The focus on this work is that of creating the back-end system, making it pos-
sible to deliver data in form of teaching materials to the Brazilian waste pickers.
João Mello’s subjects will focus on creating said teaching materials, meaning it is
not part of this demarcations scope.



1.6. Problem statement 13

This means that the project scope for this demarcation is defined purely to a
back-end system, that allows data to be transferred to the Brazilian waste pickers in
a sensible way, allowing data to be cached, due to the waste pickers erratic internet
connection. This is due to the project members of making this demarcation and
project are studying IT system building. Meaning that there is very little focus
within the education on things such as user experience.

Having gained this overview of the different cooperation partners and with the
initial research phase complete, the problem statement for this project can be found
to be:

1.6 Problem statement

How can a system with the ability to work with erratic internet connectivity deliver teach-
ing materials to smartphones through smart caching be created?



2 Initial concept

Having completed initial research in order to find a problem statement, the prob-
lem must then be broken down into smaller parts. This is done as to make the
problem statement simpler to overview, in accordance with the idea that more
smaller problems are more easy to solve as supposed to one giant intertwined
problem. Breaking down the problem statement into smaller problems is done via
a brainstorming project, wherein an active conversation with all members is done.
This input is taken and noted on one big paper, where the potential problems are
categorized. This categorization provides different focal points, which all together
gives an initial ideas as to which sub systems could lead to a full solution. This
chapter will in turn showcase this initial concept model. A note is that the model
is purely surface level and does not go into greater technical detail. The goal is to
create an overview of the overall system the project is creating and set the frame-
work for which research can be conducted. To do so efficiently, the initial concept
model also splits the system into several subsystems that have to work together.
This allows for each subsystem to be consequently examined, but before this tech-
nical analysis, an examination of potential implementation methods, inclduing an
examination of existing solutions is done.

2.1 Concept explanation

Moodle 
server

Moodle scraper Caching 
Server

Smart Phone APP

Smart caching 
algorithm

Stastistics / course results

Figure 2.1: The initial concept for the overall system

The model on Figure 2.1 shows the overall concept of the project in simple terms,
and outlines how the system is expected to function. Due to this being in the
early stages of development, it was seen fit to do a more simple overview of the
main concept. If at this stage a full requirement specification is made, it would
not be based on research. Therefore each sub system is described in broad terms

14



2.2. Existing solutions 15

so that it can be researched in detail later. On Figure 2.1 firstly a Moodle server is
used for creating teaching materials for the waste pickers. Moodle is a open-source
learning management system created to support blended learning, distance educa-
tion, flipped classroom and other forms e-learning[43]. Using Moodle will give the
Brazilian students whose role is to create said teaching materials a standardized
system to work on, making both their and our job simpler. Moodle is also chosen
because we already know how it works and the choice of the learning management
system is not in scope of this project.

The teaching materials on the Moodle, will then be scraped in order the put the
Moodle courses on the caching server, in a format that makes it easy for the caching
server to send it to the users. In turn this creates an interface between the Moodle
server and the caching servers database. By clearly defining this interface, it will
allow future improvements. This will also allow for another learning management
system to be used depending on the use case. The caching server consists of several
systems and will be explored in much greater detail later on. However, in this
overall concept it can bee seen as having four functions:

• Storing scraped Moodle courses.
• Storing identifying data on users, such as usernames and passwords.
• Calculating the optimal amount of course material needed for each user.
• Transferring data to the application.

All the calculations are meant to be done at this caching server in real time, so
that each user always receives the correct amount of course data, when they are
connected to the internet. Lastly a smartphone application is meant to facilitate the
courses to the waste pickers. This application must also store statistics about the
user to be sent to the caching server, but this concept will be explained in more de-
tail later. With this initial concept model explored, an analysis of existing solutions
is done, to ensure that this problem statement has not already been solved, and to
see if any existing solutions could give valuable insight towards the development
of the project.

2.2 Existing solutions

This section will focus on existing or similar solutions to this problem. The goal
is to examine whether or not any existing solutions solve part of if not all of the
initial problem statement. Examination of the existing solutions will therefore be
mainly observations made from research. Since the entire project is based around
a smartphone application, an examination of existing educational applications is
done. Of note is that the contents of the applications and their presentation is the
focus of the techno anthropologists and not this project. Effectively meaning that
this analysis will not be as extensive as theirs. To further specify the applications to



2.2. Existing solutions 16

be examined, they must have a sort of offline capability. Beyond these applications
a previous project, mentioned in Section 1.5, has attempted to overcome the issue
of erratic internet connectivity in South Africa. Because of this, the implementation
used on that project, will be examined. Finally a summary of existing solutions is
done, leading to the conclusion of the analysis.

2.2.1 Smartphone application

Firstly a list of relevant applications are found and a comparison between them is
done. This will allow some important requirements to be extracted, if for example
every version has something in common. Examination of the android applications
will be split into two categories: Education and financial management. Impor-
tantly, this examination is not as detailed as the actual course is designed by other
projects, namely the techno anthropologist as well as the students in Brazil.

2.2.1.1 Education

Whilst searching the Google play store for educational applications, a number of
indicative observations where made: Quite a large selection is available, allowing
for generalized learning. However considering the educational level of the waste
pickers both from our observations during the field research in Section 1.2 and the
statistics provided by WIEGO [25], most applications on that technical level are
aimed at children. Examples include Khan Academy for kids [17]. Using these
applications would therefore be quite demeaning towards adults and are therefore
not a great fit. This is due to the way in which they attempt to appeal to children,
which can come of as condescending to adults.

2.2.1.2 Financial management

When it comes to financial management applications, there are tons of applications
to help the user manage their money. Many of these come highly rated by their
users. While researching these apps a focus was put on what kind of educational
content they provide to the user. Meaning a system with complex financial man-
agement systems is not nearly as relevant as an app that provides relatively simple
financial help, but explains itself in detail. This would allow an app to effectively
both provide assistance in the financial management as well as an educational
platform for this very subject.

Examples include 1Money, Monefy and Easy Home Finance [15]. While these
applications all aim to make financial simpler for the user, very few of them pro-
vide teaching materials. This means that while the user can possibly gain an
overview of their finance, there is very limited help in how to do so.

When seeking applications for education on financial management, the selec-
tion was a lot more limited. One application found to be of particular interest



2.2. Existing solutions 17

is American India Foundation(AIF) Financial literacy. This application consists of
four different sections:

1. Modules
2. Schemes
3. Calculator
4. Quiz

Modules The modules page of the AIF application contains PowerPoint style
presentations on different topics[12]. The application splits these presentations
up into two categories: Important topics and How to. Important topics contains
presentations on basic financial management such as how different types of income
works and why saving money is important. It even goes into somewhat more
complex topics such as financial planning and how inflation works. In the how to
section, large amounts of practical information on various parts of finance is given.
This is everything from what is needed in India to open a bank account to how to
book a train ticket online. Essentially these modules visually present different vital
parts of financial management, which is also something this project aims to do as
described in the initial problem statement, see Section 1.6

Schemes The schemes page show different banking / pension schemes and what
is needed to be eligible to join them. A way in which to spread information to
the target group of this application as to what kind of special offers are potentially
available to them. This is not within the scope of this project, so it does not make
sense to attempt to make a similar tab in the projects smartphone application.
However, perhaps a future iteration would gain from having a similar, but localized
system.

Calculator The Calculator has two options. A saving per day calculation, where
the user can set how much something costs and how many days the user want to
spend saving op for the item. The calculator then provides the amount the user
needs to save each day. The other calculation is loan repayment, where the user
can set the loan amount, interest rate and how long until it has to be repaid in
months. The calculator will then provide an estimate of the monthly installment,
the total to be repaid and the interest paid. This would allow a user who is not
mathematically adept to compare different loans plans from how much they would
have to pay in interest in total. Notably in the interview with the Brazilian waste
pickers in Appendix .2, a waste picker informed us that, they used the calculator
application on their smartphone. Therefore providing a calculation system for
different financial applications could prove a valuable tool for the waste pickers.



2.2. Existing solutions 18

Quiz The quiz page takes the slideshows within the modules page and quiz’s the
user on the information within the modules page. Effectively allowing the user of
the application to ensure they have a good understanding of the teaching materials
provided within the modules. Allowing the user to test their knowledge of the
teaching materials could help the courses become better based on the statistics to
be gathered from the users. Beyond that it ensures the Brazilian waste pickers
gain the knowledge to a usable degree within the application. Therefore a quiz
/ testing system should be implemented in the smartphone application. With the
AIF finance application examined, a subsidiary conclusion is made.

2.2.2 Subsidiary conclusion

Haven examined different android applications and gone into detail on the AIF
finance application, some conclusions are drawn. Firstly there is not a system
covering substantial amounts of the initial problem statement. However some sim-
ilarities can be drawn to several applications. More specifically the AIF finance
application is somewhat similar, but aimed at a different target group. From the
AIF application, different important features such as quizzing and a calculator
to help Brazilian waste pickers are identified. However none of the applications
examined used a caching system, but rather downloads the whole application at
once. Effectively this means any updates are done trough the Google play store,
and this is not a suitable solution for this project. To make a smart caching system,
that only works when the correct type of data is available whilst working with
erratic internet connectivity, another solution to a similar problem. Therefore the
Green shoots project, which focused on erratic internet connectivity is examined.

2.2.3 Green shoots project

The section will describe how the Green Shoots system is build and how Christians
group helped the NGO overcome the erratic internet connection in South Africa[5].

Green Shoots provides learning content through a browser using Moodle as
well. Each user have their own unique profile, which allows Green Shoots to
analyze the user data, which is crucial for them and the teachers at the schools
to optimize both the learning material and environment. Since the connection
at each school is different Green Shoots is forced to split the schools into two
categories, online schools and offline schools. The online schools are the ones with
a connection good enough to use the system directly which means the user-data
goes directly to the system analyzing it.

The offline school a remote server is installed at the school, meaning that Green
Shoots will be able to provide materials in a reliable way, the problem with this
solution is the synchronization between the local server and Green Shoots servers.
This forced Green Shoots to spend a lot more resources on either driving to the



2.3. Conclusion 19

school or have a staff member of the school to establish a connection through a
3G/LTE dongle, in order to update the local database, using a TeamViewer client.
One would think that the solution was to just leave 3G/LTE dongle on at all time,
but the problem with this was that there are no way of automatically refilling the
cards subscription with data in the SIM-cards used in those.

What Christians group created was a system utilizing a heartbeat package com-
bined with a transmission error handler to determine when the offline school had
a connection good enough to send the data or how much data can be transferred
at a time. The system also automated the process of synchronizing the databases
minimizing the amount of human resources needed to complete the update.

As the wish is to create a system utilizing the available time slots where the
application is connected to WiFi, it could be relevant to look into the heartbeats to
examine if it could provide a base for the smart caching algorithm.

Having looked at both applications and back-end system implementations, a
summary of conclusions is made.

2.3 Conclusion

This section will summarize the most important conclusions made in the analysis
of existing solutions.

From Section 2.2.2 it can be concluded that it might be relevant to include a
version of a loan and savings calculator in the application. It is also concluded
that most applications within the topic uses the Google play, meaning that updates
to specific courses will result in an update for every one. In Section 2.2.3 it is
concluded that it might be viable to use heartbeat packages for the initial commu-
nication between the smart caching server and the smartphone application.

With this analysis complete, the more technical aspects of implementing a smart
caching system can be examined.



3 Technical analysis

This chapter will examine how to build the different parts of the system as well as
the packages to use when building the system. Firstly the theory behind a Moo-
dle scraper is explored including methodology and interfaces. With the theoretical
aspect of a Moodle scraper covered, the way in which to approach developing a
smartphone application is examined. As the smartphone application must commu-
nicate with a database, the way in which to build a database system will also be
covered. Lastly, due to the erratic internet connectivity, the theory behind creating
a way in which to cache data onto the application in a smart way is examined.

3.1 Moodle scraper

This section will examine different ways scraping is and what to consider while
building a scraping system. For example how the scraping will be done, as there
is several way of doing this. As the wish is to deliver courses that fits the needs
off the waste pickers the ability to update the courses is crucial. As these courses
will be updated continually, a system to keep track whether the newest version is
scraped is needed, this will be done using the HTTP ETag which is explored in
Section 3.1.1.

One way of scraping a website is using the websites build in Application Pro-
gramming Interface(API). An API is not the same as a remote server but rather a
part of the software that allow other systems to interact with it. When sending a
request to an API you will get requested data as a file format rather that a rendered
website. As the response you will be getting is in a predefined format, often JSON
or XML, it is much easier to parse out the data needed, as many APIs also allow
the user to specific what data and the amount of data needed.

https://opentdb.com/api.php?amount=10

Location of API

Query 
paremeters 
start with ?

The query 
clauses start 

with =

Figure 3.1: An example on how to use Open Trivia DBs API

An example of an API could be Open Trivia DB[7], their API allow users to

20



3.1. Moodle scraper 21

request a specific amount of trivia questions, on Figure 3.1 it is shown how to send
a request asking for 10 questions. In this example the API only requires one query
parameter which is the amount of questions, but more can be added by simply
adding a & followed by the next query, in this case it could be for example a
category. The query parameters can be found in the documentation for the specific
API. The example on Figure 3.1 yield the result seen in Code-block 3.1.

{ " response_code " : 0 ,
" r e s u l t s " : [

{ " category " : " Geography " ,
" type " : " mult ip le " ,
" d i f f i c u l t y " : "medium" ,
" quest ion " : "What i s the region con jo in ing Pakistan , India , and China with ←↩

unknown leadersh ip c a l l e d ? " ,
" correct_answer " : " Kashmir " ,
" incorrec t_answers " : [ " Andorra " , " G i b r a l t a r " , " Quin " ] } ] }

Code-block 3.1: Example of a response from Open Trivia DB in JSON format

Moodle does also have a API, but after taking a look into how to utilize this API
it was found to be very sophisticated, and without any clear description of how
to use it. And the examples given in the file_API documentation[44], is minded
on people wishing to build a module for Moodle. The API also requires that the
location of each file is known before hand in order to be used, this could be done
by accessing the file database on the Moodle server, however before starting to
build a system able of doing this other ways of scraping is examined.

Another way of scraping is by sending HTTP requests to a server and then
parsing the response either by text pattern matching or by parsing it into a Docu-
ment Object Model(DOM). DOM is a language-independent API treating HTML,
XHTML and XML as a tree structure, where each node represents a part of the
document, an example of this can be seen on Figure 3.2.



3.1. Moodle scraper 22

1 < !DOCTYPE html>
2 <html>
3 <head>
4 < t i t l e >My First HTML</ t i t l e >
5 <meta c h a r s e t ="UTF−8">
6 </head>
7 <body>
8

9 <p>The HTML head element ←↩
contains meta data . </p>

10 <p>Meta data is data about the←↩
HTML document . </p>

11

12 </body>
13 </html>

(a) Example of HTML code

Document

HTML

Head Body

Title p(paragraph) p(paragraph)

Text Text Text

(b) Tree structure of HTML code seen on
Figure 3.2a

Figure 3.2: Example on how HTML translates into a DOM tree

The DOM API have predefined methods for accessing and manipulating the
tree and its elements. Each node can have multiple event handlers attached to
them, making the content dynamic, this could for example an on-click event which
allows the user to submit login data or changing the color of an element when
you mouse over it. This works more efficient than parsing the response by text
pattern matching, as you will be getting complete elements and not just text strings
matching the input. However, text pattern matching is often used in combination
with machine learning to do data mining. As the scope of this project is smart
caching and not data mining, the responses will be parsed into a DOM tree which
also will allow us to access the download file event attached to the content on the
Moodle server that will be used. Essentially this means that if the system is able
to see the content in the response from the Moodle server then it should be able to
download the files by finding them in the DOM tree.

With the different methods of scraping examined both using the Moodle API
and using DOM parsing seem like a suitable solutions for scraping, however one
must be picked. Looking at using the two solutions the API would require us to
split the system up into two smaller subsystems one handling download files based
on information served by the other subsystem that should keep track of updates
in the Moodle file database. Using a DOM parser would require that the system
is able to send a HTTP request to the Moodle and parse the response into a DOM



3.1. Moodle scraper 23

tree, in which it should be able to identify content and activate the download event
which is connected to the nodes.

With the two examples of scraping examined the way in which HTTP keeps
track of a files concurrency is examined, to give an understanding of how to do it
in the system and whether the same system can be used.

3.1.1 ETags

As explained in Section 3.1 the courses that need to be scraped will be updated
continuously, therefore a system cable of tracking the concurrency of a file must
be found. The HTTP have a system like this already called entity tags (ETags).
This tag is not a mandatory tag, which means that how it is generated is also not
specified, but is up to the individual server owner to specify the composition of
it. The most common way of generating this value is by using a collision-resistant
hash function and hashing either the content or the time stamp of last modification.
By requesting a file from Moodle it can be seen that they implement ETags.

This will allow us to use this tag for comparing whether the caching server has
the newest file download already by saving the ETags of already downloaded files
in a format explained in Section 3.1.2, and comparing the ETag of the header to this
database. Section 3.1.2 will also explain the format in which the files are stored.

3.1.2 File database

As described in Section 5.1 one of the priorities in this project is to define the
interfaces between the different subsystems. This will allow people to exchange
subsystems for a system that the prefer, like exchanging Moodle for Blackboard or
another LMS. As mentioned in Section 3.1.1, this section will explain in which way
the files and ETags will be stored.

To make it easy to keep track of each course the files will be stored accordingly
to that and with a folder for course and a folder for each topic within the course,
this structure is shown on Figure 3.3.



3.1. Moodle scraper 24

Course 
1

Topic 2 Topic nTopic 1

File 1 File 2 File n

Course 
n

Topic 2 Topic nTopic 1

Courses

File 1 File 2 File n

Figure 3.3: Visualization of the file system

Storing the ETags is a bit more complicated as they must be stored together
with the URL they where downloaded from, as the download URL for an updated
file would be the same. It is found that JSON is a suitable format for this, as it is
a lightweight format saving and sending data objects. It will allow us to save each
pair of information as one element in the file, making it easy the check whether
it is a complete match which would mean that the file is in its newest format or
just a partial which would mean that the file was updated. The files will be saved
in a array of the type File when downloaded, this type contains the URL and the
ETag as seen on Code-block 3.2. The two entries is of the type string to allow a
combination of both letters, numbers and special characters, as these types will
appear in URLs and ETags.

1 type File s t r u c t {
2 Href s t r i n g ` j son : " hre f " `
3 Etag s t r i n g ` j son : " etag " `
4 }

Code-block 3.2: File object

1 type Files s t r u c t {
2 Files [ ] File ` j son : " f i l e s " `
3 }

Code-block 3.3: Object that contains all downloaded files

This element will the be saved in another struct, Files, with the the entry files



3.2. Smartphone Application 25

which is an array of the type File explained before, this struct can be seen at Code-
block 3.3. After each entry in both Code-block 3.2 and Code-block 3.3 there is
a ‘json:‘ this tag tells the the JSON package how to organize the elements in the
database file. This can be seen on Code-block 3.4 where an example with two
files downloaded from AAUs Moodle is shown. Each file is within curly brackets
separated by a comma.

{ " f i l e s " : [
{ " hre f " : " h t tps ://www. moodle . aau . dk/ p l u g i n f i l e . php/1032158/ mod_folder/content←↩

/0/ coursenotes/AAUgraphics/aau_logo_new_circle . eps ? forcedownload =1" ,
" etag " : "\"01 aea7c56b349e2d215bc9250b081c763055c6fa \ " " } ,

{ " hre f " : " h t tps ://www. moodle . aau . dk/ p l u g i n f i l e . php/1032158/ mod_folder/content←↩
/0/ coursenotes/AAUgraphics/aau_logo_new_circle . pdf ? forcedownload =1" ,

" etag " : "\"6 b9fe325c9e9fe2611795112feb2872967d60fa2 \ " " }
] }

Code-block 3.4: Example of how the database would look if the files where downloaded from the
AAU Moodle

With the formats explained an conclusion of how the system will be build can
made in Section 3.1.3.

3.1.3 Subsidiary conclusion

Based on the findings in Section 3.1 it is found that it is suitable to utilize DOM
parsing to scrape Moodle for files, as using the Moodle file API would require a
system for interacting with the Moodle database in order to download the files,
which would lead another problem as this database contains both new and out-
dated files which would have us making more than two comparisons which is the
amount need if DOM parsing is used. It was concluded in Section 3.1.2 that using
JSON as file format for the database of downloaded files would provide an easy
way of keeping track of those. For storing the scraped files on the smart caching
server the tree system shown on Figure 3.3 will be used.

With the Moodle scraping system explained the next step is to examine the
smartphone application.

3.2 Smartphone Application

This section will break down the smartphone application part of the initial concept
model, described in Chapter 2. Examining eash part of building a smartphone ap-
plication. Firstly considerations towards which operating system to develop must
be used is done. Then an examination of user identification is commenced. As the
intention with the smartphone application is to facilitate course content stored on
a Moodle server, an analysis of what is needed to be facilitated is done. Since these
Moodle courses are stored on the caching server as described in Section 3.3, an



3.2. Smartphone Application 26

analysis of how the two are to communicate is done. To enable the smart caching
described in Section 3.3.2.3 some statistics must be collected, but to understand
which statistics an analysis is done. Importantly, the smartphone application must
be able to determine if it is connected to the internet. To establish how a smart-
phone application can do that, an analysis of how connectivity is handled on such a
device is done. Lastly a summary of conclusions for the smartphone application is
done, allowing for requirements to be establish. Before analyzing the smartphone
application, it must be specified which operating system the application must be
developed for.

3.2.1 Operating system selection

Since the goal of the project is to get this educational system to as many of the
Brazilian waste pickers as possible, the operating which the most of them uses
myst be found. Optimally the smartphone application would be on all operating
systems used by the waste pickers phones. However in order to limit the scope of
the project, only one operating system is selected. While no conclusive observa-
tions where made doing the field research as to which operating system was most
widespread, a conclusion will be made from more generalized statistics. The global
market share for each major smartphone operating system is therefore showcased
on Figure 3.4.

January
2017

A
pril 2017

July
2017

O
ctober

2017

January
2018

A
pril 2018

July
2018

O
ctober

2018

January
2019

M
arch

2019

0

20

40

60

80

Sh
ar

e
in

%

Android
iOS

Figure 3.4: Smartphone operating systems market share in Brazil[36]

As can be seen in figure Figure 3.4, Android is the most prominent smartphone
operating system by far, having over 80 % market share in Brazil. Due to this higher
usage of Android smartphones and the goal of reaching as many as possible, an
Android application is the most sensible choice. Of course developing for iOS
also would almost ensure that almost every waste picker with a smartphone could



3.2. Smartphone Application 27

be reached. With Android selected as the operating system to develop for, the
different APIs of the Android operating system are examined.

3.2.2 Android API level

Android continuously receive major updates in form of new releases. This could be
from version 4.4 to 4.5 or 7 to 8 etc. With each major release Android updates their
"API". These APIs are linearly enumerated from API 1 to the current API 29 (pie).
The users phones API will depend on if the phone manufacturer releases an update
for the phone. This means that older phones that are no longer supported by their
manufacturer are not going to receive an update. Luckily APIs are backwards
compatible, so a phone using API 28 can run applications designed for API 27 and
down. Because of this, selecting an API is a balance between the features needed
and how old phones the application needs to run on. To help with this selection
process Android studio, the development tool for Android applications, provide
both a feature overview of each major Android release and their respective features
as seen on Figure 3.5a.

(a) (b)

Figure 3.5: Pictures from Android studio showing the support for each API level on Figure 3.5a and
features of KitKat on Figure 3.5b

When choosing the API to be used in this project, the smartphones the waste
pickers have must be taken into account. As observed during the field research
in Brazil the waste pickers phones where decent. However, as the observations



3.2. Smartphone Application 28

where very limited, a focus on a lower API version is done, to ensure a higher
compatibility. But in order to help facilitate these Moodle courses as simply as
possible a feature introduced in Android version 4.4 API 19 KitKat called "External
storage access". This will allow the courses to be saved to a phones SD card.
Effectively allowing it to use more potential space.

Since this API also works with 95,3% of Android phones, see Figure 3.5b, al-
most every phone should work with it. Having selected the API for the project, the
user identification system on the Android application is examined.

3.2.3 User identification

Since the application has to have several users each with their own course progress,
a user identification system is needed. While the back-end is done trough the
MySQL system described in Section 3.3.1, the Android application must therefore
be able to communicate with this MySQL server. As the Brazilian waste pickers are
meant to create their own account, the Android application must therefore be able
to send create account requests. Likewise the waste pickers must be able to login
to their own account. This would allow the waste pickers to keep their progress
even when switching phones.

As the focus of this project is the smart caching aspect of this system, the An-
droid system must be built as simply as possible. For simplicity sake, the Android
application could be made to just send text from text input fields. This works by
giving the user some text fields to input their information and a button to "send"
this information. For the sake of visualizing just how simple this implementation
could be see Figure 3.6.



3.2. Smartphone Application 29

(a) (b)

Figure 3.6: Basic implementation of a login and register screen.

Logically, the user must also be able to logout in case another person wants to
continue their courses on another persons phone. So a logout feature should also
be implemented. Once it is possible to identify unique users, the an examination
of how to implement the Moodle courses can be done.

3.2.4 Moodle courses

Since this project uses Moodle courses as the learning material, the application
must be able to display said courses. However more specifically the different types
of files to be displayed must be examined. While Moodle supports a plethora of
file types[29], the focus will be on having the following types of media supported:

• Text
• Audio
• Video
• quiz



3.2. Smartphone Application 30

The reason for these specific four is that it will allow for varied content. Espe-
cially audio and video are important to allow the waste pickers who cannot read
or write to also gain from the courses. Furthermore a quiz system will allow the
progress and proficiency of the waste pickers to be monitored.

To simplify the project only one file type of each category will be implemented.
This means that multiple text file types are out of scope for this project, but would
be a good idea for future improvements. The file types to facilitate are chosen to
be:

• Pdf
• Mp3
• Mp4

An examination of how to facilitate these inside the Android application is now
done.

Pdf In order to simplify the Pdf facilitation a library will be used. An examination
of GitHub for available libraries, found that the "Android PdfViewer"[1] is the most
commonly used implementation. Using this library allows for a super basic PDF
reader with the two lines of code shown in Code-block 3.5.

1 pdfView=(PDFView ) findViewById ( R . id . filename ) ;
2 pdfView . fromAsset ( " documentname . pdf " ) . load ( ) ;

Code-block 3.5: PDF reading using the AndroidPdfViewer library

This allows opening a pdf file from an asset folder inside an Android applica-
tion.

Mp3 Playing mp3 files in Android can be done by using a built in function known
as the MediaPlayer API[18]. Effectively this means that mp3 support is part of the
Android operating system and implementation of same can be done with relatively
few lines of code. To showcase this a sample with basic functions are showcased
on Code-block 3.6.

1 publ ic void play ( View v ) {
2 i f ( player == n u l l ) {
3 player = MediaPlayer . create ( t h i s , R . raw . filename ) ;
4 player . setOnCompletionListener (new MediaPlayer . OnCompletionListener ( ) {
5 @Override
6 publ ic void onCompletion ( MediaPlayer mp ) {
7 stopPlayer ( ) ;
8 }
9 } ) ;

10 }



3.2. Smartphone Application 31

11 player . start ( ) ;
12 }
13

14 publ ic void pause ( View v ) {
15 i f ( player != n u l l ) {
16 player . pause ( ) ;
17 }
18 } item
19

20 publ ic void stop ( View v ) {
21 stopPlayer ( ) ;
22

23 }
24

25 p r i v a t e void stopPlayer ( ) {
26 i f ( player != n u l l ) {
27 player . release ( ) ;
28 player = n u l l ;
29 }
30 }
31

32 @Override
33 protec ted void onStop ( ) {
34 super . onStop ( ) ;
35 stopPlayer ( ) ;

Code-block 3.6: Basic media playback using the MediaPlayer API [10]

Just as with the pdf reading, the file is selected from a folder, in the case on
Code-block 3.6 the file filename is chosen from the folder raw and a new player
is created on line 3. The actual media playback is done trough the build in Me-
diaPlayer API. In order to improve the experience three different functions are
implemented play, pause and stop. Each of these functions can be called via a but-
ton and allow the user to control the playback. Of note is that the media playback
take up considerable amount of resources. If for example the code just created
new instance of a MediaPlayer every time a new file is played without closing it
after, it would take quite a bit of resources and impact the phones on screen time.
To ensure that the Android application does not fall into this issue, the stopPlayer
function is automatically called at the end of every media playback. This means
that if the user listens to the audio until the end, it will automatically end that
instance of the MediaPlayer.

Mp4 Android has a build in VideoView class that can be implemented to display
video. Using this VideoView class, all the natively supported video file types are
supported, including mp4 files. The implementation of VideoView can be seen on
Code-block 3.7.

1 VideoView videoView = findViewById ( R . id . video_view ) ;
2 String videoPath = " android . resource :// " + getPackageName ( ) + "/" + R . raw .←↩

filename ;



3.2. Smartphone Application 32

3 Uri uri = Uri . parse ( videoPath ) ;
4 videoView . setVideoURI ( uri ) ;
5

6 MediaController mediaController = new MediaController ( t h i s ) ;
7 videoView . setMediaController ( mediaController ) ;
8 mediaController . setAnchorView ( videoView ) ;

Code-block 3.7: Video playback using the VideoView package [19]

In this code example a VideoView is creating in the layout page and given
the id video_view. This id is then found in the main Java. From there a string
is made to the video path which in this case is a video with the name filename
within the folder raw. This file is then parsed. Finally it is set to be played via the
setAnchorView command.

3.2.5 Data logging

As each end users smartphone application is supposed to cache only the courses
and topics relevant to them, some data must be gathered. The different data points
needed will therefore be examined. Firstly the course results data points and their
potential usage within the project is explored. However not only the results of the
course are relevant as the surrounding data, such as time between course results
must also be tracked. Therefore the more general usage statistics data points and
their respective usage is also explored.

3.2.5.1 Course results

As the Brazilian waste pickers complete parts of the course, this completion must
be logged. This will allow the smart caching system to gain an overview of each
users progress in the courses. Since the courses consist of mostly text video and
audio completion could be set to:

• text: When scrolling down to the button of a text document
• audio: When reaching the end of the audio
• video: When reaching the end of the video

While this doesn’t mean that a user necessarily understood or even paid attention
to the different files, it still shows a sort of completion. Of course to ensure that the
user has actually gained knowledge from the courses, as well as just paying atten-
tion instead of scrolling trough it, a test system should be implemented. However,
this test system is out of the scope of this project. So while understanding this
limitation of this data, it will still provide an estimate of material the users gone
trough. By gather this data on the progress of the user, the smart caching algo-
rithm can understand the current progress of the user. By attaching timestamps
to this data, it also becomes possible to do calculations on the average amount of
time between progress. This average can be used in the smart caching algorithm



3.2. Smartphone Application 33

as described in Section 3.3.2. Using this data point for the course results will there-
fore provide an indication of the users progress as well as the speed at which they
progress. However more data must be gathered for the smart caching system to be
effective.

3.2.5.2 Usage statistics

One of these data points is when and for how long the phone is connected to Wi-
Fi. By collecting data on the Wi-Fi connection times and duration, the algorithm
can begin factoring this in. If a user is rarely connected to Wi-Fi, then logically
bigger amounts of data is needed to be cached to the smartphone, compared to a
user who is frequently connected to Wi-Fi. As to how specifically this will affect
the smart caching algorithm, is out of scope for this project, however a very im-
portant step for further development. Consequently, since both the data needs to
be stored on when the phone is connected to Wi-Fi as well as course downloads
being exclusively trough Wi-Fi, Internet connectivity inside of Android must be
examined.

3.2.6 Internet connectivity

As described in Section 1.3.2, the Brazilian waste pickers do not have much data
on their cell phone plans. Therefore if a course with several videos needs to be
downloaded, it must be done over Wi-Fi. The smartphone application must conse-
quently be able to determine if it is connected via Wi-Fi or cellular data. In order
to do so the ConnectivityManager build into Android can be used. An example
showcasing how the ConnectivityManager is shown on Code-block 3.8.

1 ConnectivityManager connMgr =
2 ( ConnectivityManager ) getSystemService ( Context . CONNECTIVITY_SERVICE ) ;
3 boolean isWifiConn = f a l s e ;
4 boolean isMobileConn = f a l s e ;
5 f o r ( Network network : connMgr . getAllNetworks ( ) ) {
6 NetworkInfo networkInfo = connMgr . getNetworkInfo ( network ) ;
7 i f ( networkInfo . getType ( ) == ConnectivityManager . TYPE_WIFI ) {
8 isWifiConn |= networkInfo . isConnected ( ) ;
9 }

10 i f ( networkInfo . getType ( ) == ConnectivityManager . TYPE_MOBILE ) {
11 isMobileConn |= networkInfo . isConnected ( ) ;
12 }
13 }
14 Log . d ( DEBUG_TAG , " Wifi connected : " + isWifiConn ) ;
15 Log . d ( DEBUG_TAG , " Mobile connected : " + isMobileConn ) ;

Code-block 3.8: Broadcast Receiver used to see if Wi-Fi is enabled [13]

This code creates two booleans defining whether or not Wi-Fi or mobile data is
connected. This means that code needed to run exclusively when Wi-Fi or mobile



3.2. Smartphone Application 34

data is on can look at these booleans. Effectively this could be used to ensure that
the downloads run only when Wi-Fi is connected. Furthermore it can be setup
to periodically check for Wi-Fi and functions can be setup to run when Wi-Fi is
found to be connected. This could be starting the whole smart caching function for
example. When the Android phone has established that it is on Wi-Fi it can then
begin communicating with the server.

3.2.7 Communication

For the Android to commence the smart caching sequence, it must first ensure not
to use the users data-plan but only Wi-Fi as described in Section 1.3.2. Once this is
done, the Android application can then begin communicating with the server. This
gives a one to many relationship between the server and the Android users. Fur-
thermore since the communication process is started by the Android application
and not the caching server, this is a client-server relationship. While the algorith-
mic calculations are to be done inside the caching server in order to minimize the
impact on the smartphones performance, the entire communication loop starts at
the smartphone.

The communication itself can be done trough the HTTP protocol. This allows
for both communication and user identification, as well as file transfers between
the server and the smartphone application.

In Android HTTP requests can be done via a library called "volley" [20]. A
simple string request within volley can be seen on Code-block 3.9.

1 StringRequest stringRequest = new StringRequest ( Request . Method . GET , url ,

Code-block 3.9: Volley string request

This sends a simple string HTTP GET request to a defined "url". For this to be
usable, the response from the server must be read. Therefore a "Response.Listener"
is setup which records the string received when the server responds to the Android
application. Then it is up to the user to define what to do with this response. Be-
yond that Android also requires that an "Response.ErrorListener" is setup. This
will then catch if an error occurs doing to the server response, such as no re-
sponse, a responds using user defined illegal characters etc. An example of a
"Response.ErrorListener" can be seen on Code-block 3.10

1 new Response . Listener<String > ( ) {
2 @Override
3 publ ic void onResponse ( String response ) {
4 //Do something with the response .
5 } ,
6 new Response . ErrorListener ( ) {
7 @Override



3.2. Smartphone Application 35

8 publ ic void onErrorResponse ( VolleyError error ) {
9 //Do something with the e r r o r .

10 }

Code-block 3.10: Volley Response and error listener

How this StringRequest system is implemented will be explained in greater
detail in Section 5.5. However this forms the basis for communication between the
smartphone and the caching server.

3.2.8 Subsidiary conclusion

As part of the larger initial concept model, the smartphone application forms the
end-user system for the Brazilian waste pickers. Firstly it was found that Android
should be used due to the much larger market share in Brazil. While creating both
an iOS and Android application would be optimal, due to time constraints, only
one is chosen. After selecting Android as the operating system, the API level is
chosen. Due to external storage access being added in API 19 (Android 4,4 kitkat)
and it covering almost 96% of users, it is chosen. As each user must be able to
have their own individual progress tracked, a user management system is needed.
This system is chosen to be MySQL and the features needed are that a user must
be able to both create an account as well as login directly from the application.
The main feature of the Android application for the Brazilian waste picker, is the
Moodle course facilitation.

To further specify which types of data is to be supported within the applica-
tion, a selection process is done leading to pdf, mp3 and mp4 being chosen to be
supported. Logically, more supported file types would be optimal, but these are
selected to limit the scope of the project. It is also found that quizzes / tests has
the potential the greatly help the end-user and ensure the people overseeing the
courses that the waste pickers are gaining an understanding of the teaching mate-
rials. However this is chosen, not to be within the scope of the project, as it seems
a larger task, and time is limited. A way of facilitating each type of supported file
types is then presented.

With the file types facilitated an examination of data logging is given. This ex-
amination concludes that the users progress within the courses must be monitored
in order to allow for the smart caching. It is also found that the times in which the
user is connected to Wi-Fi as well as the duration for same should be logged. Then
a way in which to check this is presented. Lastly the communication between the
Android application and the caching server is examined and a Android specific
code example is given.

With this technical examination complete, the basis on which the Android ap-
plication is built upon is created. As this application has to communicate with the
caching server, the way in which that side of the communication is done, must be



3.3. Caching server 36

examined. Therefore an analysis of the caching server is commenced.

3.3 Caching server

This section will analyze the different aspects of the caching server used in this
project. Firstly a system able to handle the databases needed throughout the sys-
tem is found and justified in Section 3.3.1. Secondly a look into the necessities for
a smart caching system to function is taken in Section 3.3.2. Including which data
is necessary to calculate how much material should be sent to the user and when
it makes sense to transfer this material.

3.3.1 Databases

This section will examine how to create a system cable of storing the data needed
in multiple cases. These cases being user information used for authentication and
smart caching, but also data about available courses and files within these. As
multiple parts of the system might need access to the data simultaneously, it would
not make sense to store it in JSON like it is done in the database of downloaded
files, described in Section 3.1.2. Instead MySQL and PostgreSQL is considered as
both system supports multiple users at once and allows for creation of multiple
tables within the same database.

However, the final result ended up being MySQL as it is easier and less time
consuming to setup[3]. With the platform for saving data defined the data which
need to be stored on the is examined.

In Section 3.2.3 it is concluded that a table of users is need in order to both
identify an keep track of the their progress. The most important thing is to be able
to identify each user, as the information about their progress first becomes relevant
as more courses is added. The identification can be done by creating a table in
the database called users this table will contain five columns, containing following
values id, username, password, email and phone so that i looks like Table 3.1.

id username password email phone

1 user1 f249ff8dcd6675e9a some@mail.br 54854548

2 user2 f249ff8dcd6675e9a some@mail.bk 54854538

3 user3 f249ff8dcd6675e9a some@mail.eu 54854528

4 user4 f249ff8dcd6675e9a some@fail.br 54854518

Table 3.1: Users table on MySQL server

These values will allow the smartphone application to send request to the server
asking whether the information entered is connected to a valid user. The table



3.3. Caching server 37

containing the available files will be described later on in Section 5.2.2.
As the wish is to be able to track a users progress in the courses another table

might be created later on containing relevant information about this. The same
goes for the information relevant for the smart caching examined in Section 3.3.2.
These tables can then be joined so that identifiers from the users table can be used
in other tables. For example a table used in smart caching could contain the rows:
username, last connect, last sync, average sync amount, users row can then be join
with the username row in the users table. With MySQL found to be a suiting
solution for handling our databases the smart caching system is examined.

3.3.2 Smart caching

This section will be examining the aspects of building a caching system like which
statistics is needed and algorithms for calculating how much data should be sent.
The first thing that will be examined is statistics needed to be able to build the
algorithms. The statistics will be split up into two categories, network statistics
and user statistics.

3.3.2.1 Network statistics

This section will explore the statistics that can be logged within network traffic.
The first thing that might be relevant is timestamps for when the application tries
to connect to the server, one case could be that the application is set to send a
heartbeat with a specific interval while connected to a Wi-Fi signaling that is con-
nected and ready to receive data. This will give the server the ability to calculate
an average time for an users connection, which can be used to calculate how much
data can be send.

Another thing that can be useful to calculate how much data that should be
possible to transfer is the package loss. This information will be available is the
data is transferred through a TCP connection counting the amount of retransmis-
sions.

How these things will affect the caching is evaluated in Section 3.3.2.3, but
before a model for the smart caching can be created the user statistics is considered.

3.3.2.2 User statistics

This section will examine the user statistics that could be useful to log in order to
calculate the amount of course material needed to be transferred to make sure that
the user always have enough content to not run out before the next synchroniza-
tion.

The first thing that should be tracked it how much time the user spends within
the application, this could be used to give an idea of which parts of the application
that is used the most. The next thing is the time spend within each course but also



3.3. Caching server 38

within the materials provided. This data can be compared to an estimate given by
the creator of the course giving an idea whether they have seen the whole video or
listened to the podcast. Information on how the user performed in the tests in the
courses should also be taken into account as this will give an indication on whether
the materials matches the level of the waste pickers and therefore also give an idea
of how fast they can go through it.

With an idea of the time spend within the application and the time spend on
the materials this can be sent to the caching server and used to calculate how much
material that should be downloaded.

3.3.2.3 Smart caching model

This section will look at how the data from the previous sections, network statistics
and user statistics, can be used to calculate how much data that will have to be send
but also how much it is possible to send for each connect.

The idea is to create an algorithm the uses some kind of a weighted average,
exactly how the algorithm will work and be implemented will be described in
Section 5.4. The reason for using a weighted average instead of just the average is
that a users habits might change over time, this means that synchronizations will
have a higher weight if they are newer, as they will give a clearer picture of when
the next synchronization will be. So that can be taken into account when deciding
how much data needs to be transferred. However, the connection must also be
taken into account as it is important that all the data send is actually received, so if
the package loss it to high then it is better to slow the transmission down. Another
thing that must be taken into account is file sizes, meaning that the algorithm
should be able to calculate when it is a good idea to send larger files based on stats
from recent synchronizations.

As mentioned in Section 3.3.2.2 the amount must also be calculated based on
how active the user are, meaning that when the application contacts the server, the
information described is transferred. This gives us a smart caching model like the
one on Figure 3.7.



3.3. Caching server 39

Amount to sync
Smart caching 

algorithm

Database

Last synchronization,
Available data

Smartphone
User data

Server
Files

Connection status

Figure 3.7: Smart caching model

The smartphone, database and server feeds the algorithm with data, which
then calculate the amount that should be send. The server then starts to send this
amount to the smartphone, while doing this, the connection status is send to the
algorithm for it to calculate whether it is possible to reach the initial target.

With the initial smart caching concept explained an conclusion on the caching
server can be made.

3.3.3 Subsidiary conclusion

This section will summarize the features found to be relevant for our caching server
to work. In Section 3.3.1 it is found that system cable of handling multiple users at
the same time is needed. Both in handling multiple connections at the same time
but also having multiple users. This system should also be cable of saving more
data regarding each user in the same database so that the information is easily
accessed by the smart caching algorithm. The system should also be able to run
the Moodle scraper with set interval to make sure that all the files exist in their
newest version on the server and to know how much data each course contains.



3.3. Caching server 40

In order to communicate with the smartphone the server should be able to handle
incoming requests and write responses.

How all this is done will be examined in Section 5.4. But before moving on
to the implementation chapter a requirements specification is done, summarizing
and testing all requirements found throughout this chapter.



4 Requirement specification

This chapter will summarize the conclusions gathered trough field research, ini-
tial concept models and a technical analysis. With the conclusions summarized
the requirements specification methodology is explained so that the format of the
requirement specification is clear and understandable. An example of testing a
requirement in the requirement specification is then given. With the methodology
explained, the requirements is presented in a list from highest to lowest impor-
tance. With the final requirements completed the conclusion of the requirements
is given. This conclusion sets the scope of the project and its development while
drawing clear and concise lines on what is within scope.

As this project has potential to quickly become to large scaled for two fourth
semester students, requirements that are out of scope of this demarcation are
briefly discussed, in order to help future development of the system. However
before an overall conclusion on the requirements specification is completed, it is
necessary to recall the conclusions made in the problem and technical analyses.

4.1 Summary of conclusions

When building a requirements specification, summarizing the conclusions made in
previous chapters will ensure that the requirements are generated on the basis of
what have been concluded through out problem and technical analyses. To ensure
that every requirement have a reason to exist.

In Section 1.3.1 the waste picker Maria tells that the way she uses her smart-
phone is by sending audio clips instead of writing messages, which means that the
learning materials offered should include either video or audio, to allow illiterate
to also gain from the courses.

It is also found out that the waste pickers does not have a lot of money to work
with. In the context of money the Brazilian phone plans were examined in Sec-
tion 1.3.2, which showed that subscriptions with "a lot" of data where quite expen-
sive considering their salary. The subscriptions that the waste pickers might only
have around 500MB of data which they might not want to spend on download-
ing courses. Considering the last conclusion that the learning materials probably
should be video or audio the 500MB data would also be used up quite fast.

Section 1.5 describes that the application is developed for SLU to use in pro-
viding courses to the waste pickers. In order for them to check whether the waste
pickers actually participate in the courses or just joined to get the extra R$ 360,

41



4.2. Requirement specification 42

progress tracking should be implemented.
To understand the market for the proposed solution, some existing solutions

are examined and concluded upon in Section 2.2.2. The conclusion is that it might
be relevant to include a calculator similar to the one in the AIF finance application.
Section 2.2.2 also concludes that most of the applications uses static courses, which
mean that every time a course is updated this need to be done through Google
play store. This way also means that the application contains all available courses
at all times taking up a lot of space, which the waste pickers phones might now
have as they are older generations. This means that a system with the ability to
transfer courses when needed must be developed.

With all conclusions summarized the requirements can be generated after a
short description of the methodology.

4.2 Requirement specification

The requirements will be generated and tested using the method described in [24,
p. 98]. By the methodology being transparent, a better insight can be gained into
how the demarcation came to its conclusion in terms of requirements. To showcase
this methodology an example of a requirement generation is given.

One of the conclusion found in Section 4.1, was that the Brazilian waste pickers
did not have much data on their smartphone plans. Therefore creating a system
that detects when their smartphone is connected to Wi-Fi would help ensure that
this system does not waste their data. Therefore the requirement listed is:

The smartphone application must be able to determine if it is connected to Wi-Fi

The requirements specification is presented prioritized from most to least im-
portant. However before the requirements can be listed, some clarification is
needed. In order to avoid having an excessive amount of requirements the fol-
lowing terms are used the in the final requirements specification:

Stats: The different statistics gathered are described in greater detail in Section 3.2.5.

Content: The content facilitated in Moodle courses are described in greater detail
in Section 3.1.

As the demarcation splits this system into several subsystems, logically the
requirements are listed for each subsystem. The subsystems are listed in the order
shown on the initial concept model in Figure 2.1.



4.3. Partial conclusion 43

4.2.1 Requirements moodle scraper

1. Find content on a Moodle server.
2. Download files from Moodle.
3. Save files in the format described in Section 3.1.
4. Find ETags in a HTTP-response.
5. Compare ETags to local database.

4.2.2 Requirements caching server

1. Receive requests.
2. Write responses.
3. Access local files.
4. Save stats from application.
5. Run the Moodle scraper at a set interval.
6. Perform CRUD on users, see Section 3.2.3.
7. Determine the amount of data to be sent.
8. Handle several users simultaneously.
9. User password recovery.

10. Display stats graphically.

4.2.3 Requirements smartphone application

1. Facilitate course content.
2. Determine if it is connected to Wi-Fi.
3. Write requests as described in Section 3.2.
4. Read responses as described in Section 3.2.
5. Facilitate a create user and login system.
6. Download files from caching server.
7. Gather stats as described in Section 3.2.5.
8. Must handle large files such as video.
9. Be able to playback mp4 and mp3 files.

10. Have a savings and loan calculator similar to the AIF finance application
described in Section 2.2.1.2.

4.3 Partial conclusion

With the requirements specified, a important observation is that these systems rely
on each other for the entirety of the system to function. This means that the dif-
ferent subsystems must all be made for this system to function. While the require-
ments for each subsystem is listed from most to least important, the subsystems



4.3. Partial conclusion 44

are not. These requirements will however give the project the ability to move into
the implementation of these subsystems.



5 Implementation

This chapter documents the implementation of the system based on the require-
ments generated in the requirements specification. Firstly the programming philos-
ophy used during programming is discussed. Having established ground rules for
programming, the implementation will be listed in the order shown in the initial
concept model. Effectively the implementation will be presented in the following
order:

1. Moodle scraping
2. Database system
3. Caching algorithm
4. Android application

Firstly the programming philosophy used throughout development is discussed.

5.1 Programming philosophy

Programming philosophy in this context is the intention to make this system modi-
fiable and simplify future development. Including making clear interfaces between
the different subsystems effectively making it modular. Additionally the philoso-
phy becomes important when it comes to which extend the code documentation is
done. Therefore both of these points will be explained and the reasons behind the
choices made in this project. Firstly the interfaces will be explained.

5.1.1 Interfaces

The interfaces linked between different parts of the project have already been out-
lined in the initial concept model as shown on Figure 5.1. Essentially by making
the data / communication formats within the "arrows" clear and understandable
changing it for future development in order to simplify it. This modularity reflects
the way in which both the initial concept model as well as the implementation is
split into different subsystems. With the Moodle scraper communicating with the
caching server and the caching server communicating with the Android applica-
tion.

45



5.2. Moodle scraper 46

Moodle 
server

Moodle scraper Caching 
Server

Smart Phone APP

Smart caching 
algorithm

Stastistics / course results

Figure 5.1: The initial concept for the overall system

For the Moodle scraper the interface would then be how it stores both the files
within the caching server as well as the file-data used for the Android application,
which is stored in a MySQL database. The Android application communicates
with caching server using HTTP requests as described in Section 5.3. Effectively
making the interface the PHP-scripts. The smart caching is theoretical at this point,
therefore the theoretical interfaces are described in Section 5.4. All of these inter-
faces are described in more detail in their respective implementation section. With
the interfaces philosophy explained how the code will documented is examined.

5.1.2 Code documentation

While the interfaces are to be clearly defined as showcased in Figure 5.1, the ex-
tend in which the code is documented must also be clearly defined. In order to
document the code two things are done.

Firstly this demarcation, gives and overview and background theory for the
modules being created. Furthermore it also explains in detail the most central
functions, and the decisions leading to their implementation. This means that all
important functions are going to be documented in great detail, to help the reader
or future development gain a good understanding of what is made. In extension,
future development suggestions are also given in this section, with all relevant
summarized in the conclusion. To assist with this, the code is also commented
within the code itself. With these suggestions alongside the requirement specifica-
tion, and the comments within the code, future development is greatly simplified.

5.2 Moodle scraper

This section will document how the Moodle scraper is implemented based on the
considerations discussed in Section 3.1, and requirements established based on
these. The requirements include finding content on a Moodle server and down-
loading it, see Section 4.2.1 for a complete list of requirements. This section will
start out by examining how the part finding courses and content is build in Sec-
tion 5.2.1, followed by Section 5.2.2, which will explained how the files is down-



5.2. Moodle scraper 47

loaded and stored on the caching server, including how it is verified that a file is
concurrent.

5.2.1 Scraping

This section will document the functions used for scraping the Moodle website.
The site is scraped using DOM parsing, which is explained in Section 3.1, this is
done by using the package for Golang called Soup[27]. Soup contains functions for
parsing a HTTP response into a DOM tree and searching it for given arguments.
The easiest way to find these arguments is by inspecting the site in a web-browser
by right clicking and clicking inspect, this will show you exactly where the element
can be found in the DOM tree.

Firstly, it is needed find the available courses on the site, these is found by using
the function FindCourses, which is seen on Code-block 5.1.

1 func FindCourses ( baseURL s t r i n g , client * http . Client ) {
2 resp , err := soup . GetWithClient ( baseURL , client )
3 i f err != n i l {
4 log . Fatalln ( err )
5 }
6 parsed := soup . HTMLParse ( resp )
7 courselinks := parsed . FindAll ( " h4 " )
8 f o r i := range courselinks {
9 links := courselinks [ i ] . Find ( " a " )

10 link := links . Attrs ( ) [ " hre f " ]
11 name := sanitizeCourseName ( links . Text ( ) )
12 i f findCourse ( name ) == true {
13 } e l s e {
14 courses . Courses = append ( courses . Courses , Course {
15 Href : link ,
16 Name : name ,
17 } )
18 }
19 }
20 findTopics ( client )
21 }

Code-block 5.1: FindCourses function

FindCourses takes two inputs a string and pointer to a HTTP client, the string is
the web address for the Moodle site and the HTTP client is a client that is defined
in the main package, see Code-block 1 in Appendix .3.1, this allows logging into
Moodle.

Firstly, FindCourses sends a GET request to the URL. This is then parsed into
a DOM tree on line 6 returning a pointer to the start node. Then the function
FindAll, from the Soup-package, is used to search for the HTML-tag h4, this will
then return an array of pointers to nodes containing this HTML-tag.

This array is the looped over and the link to and name of each course is then
found, this information is compared to the database of courses. If it is a new course



5.2. Moodle scraper 48

it is added to the list otherwise it just continues. The last thing FindCourses does
is to call the function findTopics, but before the is examined the course database is
examined.

The database consists of four structs, Courses, Course, Topic and Resource, see
Figure 5.2a. Courses contains an array of the type Course, the type Course is the on
holding relevant information about each course on Moodle this information is the
name and link for each course, but also an array of the type Topic which contains
all the topics within the course.

The type Topic contains the name of each topic and an array contents which is
of the type Resource each instance of this type contains the type, name and link to
each resource in the topic. This data structure will be described in more detail in
Section 5.2.2.

With this structure explained the function findTopics is documented. This func-
tion loops over each course, sends a request to the link and scrapes for topic names
and files, the function is seen on Code-block 5.2.

1 func findTopics ( client * http . Client ) {
2 f o r j := range courses . Courses {
3 resp , err := soup . GetWithClient ( courses . Courses [ j ] . Href , client )
4 i f err != n i l {
5 log . Fatalln ( err )
6 }
7 parsed := soup . HTMLParse ( resp )
8 list := parsed . FindAll ( " l i " , " c l a s s " , " main " )
9 f o r i := range list {

10 topic := list [ i ] . Find ( " span " , " c l a s s " , " sectionname " ) . Text ( )
11 clean := sanitizeTopicName ( topic )
12 courses . Courses [ j ] . Topics = append ( courses . Courses [ j ] . Topics , Topic {←↩

Name : clean } )
13 Content := list [ i ] . FindAll ( " div " , " c l a s s " , " content " )
14 f o r k := range Content {
15 file := Content [ k ] . FindAll ( " l i " , " c l a s s " , " resource " )
16 f o r f := range file {
17 resource := file [ f ] . FindAll ( " a " )
18 f o r l := range resource {
19 link := resource [ l ] . Attrs ( ) [ " hre f " ]
20 r , _ := client . Get ( link )
21 d := r . Header [ " Content−Di spo s i t ion " ]
22 re := regexp . MustCompile ( ` f i lename =\"(?P<Name>.+) \" ` )
23 filename := re . FindStringSubmatch ( strings . Join (d , " " ) ) [ 1 ]
24 courses . Courses [ j ] . Topics [ i ] . Content = append ( courses .←↩

Courses [ j ] . Topics [ i ] . Content , Resource { Href : link , ←↩
Modtype : " resource " , Name : filename } )

25 }
26 }
27 page := Content [ k ] . FindAll ( " l i " , " c l a s s " , " page " )
28 f o r f := range page {
29 resource := page [ f ] . FindAll ( " a " )
30 f o r l := range resource {
31 link := resource [ l ] . Attrs ( ) [ " hre f " ]
32 name := resource [ l ] . Find ( " span " , " c l a s s " , " instancename " )←↩



5.2. Moodle scraper 49

. Text ( )
33 filename := sanitizeTopicName ( name ) + " . t x t "
34 courses . Courses [ j ] . Topics [ i ] . Content = append ( courses .←↩

Courses [ j ] . Topics [ i ] . Content , Resource { Href : link , ←↩
Modtype : " page " , Name : filename } )

35 }
36 }
37 }
38 }
39 }
40 }

Code-block 5.2: findTopics function

Firstly the parsed response is searched for, the tags identified, describing the
topic element. This nodes children is then searched to find the one containing the
topic name on line 10, returning the text within the node by using the Text function.
This is then sanitized so that all names follow the same naming conventions, which
means no spaces and capital letters, the sanitized name is then appended to the
database. After the topic name is found, the nodes children is searching for any
nodes containing content. This array is lopped over to find nodes with the class
resource and then nodes with the class page. Subsequently, each of these nodes is
added to the database.

With all the wished materials found and added to a data structure how the files
is downloaded and stored on the caching server is examined.

5.2.2 Downloading and storing files

This section will examine how downloading and storing of files is handled. Docu-
menting how the file structure described in Section 3.1.2 is achieved and how a list
of files available within each course is created.

As explained in Section 5.2.1 all the courses, topics and files that is found will
be added to the data structure seen on Figure 5.2.



5.2. Moodle scraper 50

1 //Courses conta ins an array of courses
2 type Courses s t r u c t {
3 Courses [ ] Course ` j son : " courses " `
4 }
5

6 //Course conta ins the name , l i n k and ←↩
t o p i c s of each course on moodle

7 type Course s t r u c t {
8 Name s t r i n g ` j son : " name" `
9 Href s t r i n g ` j son : " hre f " `

10 Topics [ ] Topic ` j son : " t o p i c s " `
11 }
12

13 //Topic conta ins the name and the ←↩
Contents of a t o p i c within a ←↩
course

14 type Topic s t r u c t {
15 Name s t r i n g ` j son : " t o p i c " `
16 Content [ ] Resource ` j son : " resource←↩

" `
17 }
18

19 //Resource i s a d e s c r i p t i o n of each ←↩
f i l e

20 type Resource s t r u c t {
21 Modtype s t r i n g ` j son : " type " `
22 Href s t r i n g ` j son : " hre f " `
23 Name s t r i n g ` j son : " name" `
24 }

(a) Data structure

Course 1

Topic 1

File 1

Courses [ ]Course

Name  
Href       
[ ]Topics

Name            
[ ]Resourse

Name            
Href                  
Modtype

(b) Visualization of the Go code on Fig-
ure 5.2a

Figure 5.2: Data structure used for files found on Moodle

Every time a new course is found it us added to an instance of the type Courses
called courses as an element in the array Courses. This gives the ability to create
a folder for each course by looping over the array and creating a folder for each
element. Since the name of each course is a part of the type Course of which the
array is, the name for the folder is easily found, the same principle goes for the
topics within the courses and the content of these.

This data structure is used for both downloading the found files and also for
adding the files to the MySQL database. The MySQL database being used by
the smartphone application to identify available files. Before examining this part
closer the function that downloads the content is documented. The function is
called DownloadContent and takes three inputs.

Firstly, it takes a string called outputDir which is the directory that all the
files will be downloaded to. The next input is a string called database, this is
not the database explained in this section, but the database containing a link to
each file downloaded and the Etag from the HTTP header. The last input is a



5.2. Moodle scraper 51

pointer to a HTTP client for the same reason as the FindCourses function described
in Section 5.2.1.

1 func DownloadContent ( outputDir , Database s t r i n g , client * http . Client ) {
2 f o r i , c := range courses . Courses {
3 f o r j , t := range courses . Courses [ i ] . Topics {
4 f o r _ , k := range courses . Courses [ i ] . Topics [ j ] . Content {
5 i f k . Modtype == " resource " {
6 wg . Add ( 1 )
7 go files . GetFile ( k . Href , outputDir+"/"+c . Name+"/"+t . Name , ←↩

Database , client , &wg )
8 } e l s e i f k . Modtype == " page " {
9 wg . Add ( 1 )

10 go files . GetPage ( k . Href , outputDir+"/"+c . Name+"/"+t . Name , ←↩
Database , client , &wg )

11 }
12 }
13 wg . Wait ( )
14 }
15 }
16 }

Code-block 5.3: DownloadContent function

On line 2 on Code-block 5.3, the function DownloadContent loops over each element
within Courses accessing both the index of the element and the content, the index
is written to the variable i and the content is saved in c.

The loop on line 3 then loops over the topics within each course and saves the
index of each to the variable j and contents to t. The last for loop then looks at the
contents of each topic only saving the content to the variable k. The modtype of the
content is then checked, if it is of the type "resource" or "page" and is downloaded
using the fitting function. This download process is done using multi threading,
allowing multiple files to be downloaded simultaneously.

To ensure all threads finishes before continuing the package sync is used. Fa-
cilitating the creation of wait groups, which waits for a collection of go routines to
finish. The wait group uses three functions Add, Done and Wait. The function Add
adds an int to a counter, Done decrements the counter by one, and Wait block the
main tread until the counter is zero. This ensures that all the files within each topic
is downloaded before continuing. The Add function is used on both line 6 and 9
just before starting a new go routine for either grabbing a file or a page, each of
these functions take a pointer to the wait group allowing them to call Done when
they are done.

Both functions utilize that the contents of the different elements is saved in
variables. They use the variables to access the course name and topic name, which
is used to place the file in the right folder. This process saves the download file in
the structure described in Section 3.1.2.



5.2. Moodle scraper 52

With the way in which the file download is handled examined, the next step is
to examine the way the list of files is communicated to the smartphone application.
As the smartphone is able to communicate with a MySQL database this is used. A
table called Files is created on the MySQL server, containing three columns so that
it looks like Table 5.1.

Course name Topic name File name

test-course-1 test-topic data.csv

test-course-1 test-topic tasks.docx

test-course-2 test-topic summary.txt

test-course-4 test-topic something.pdf

Table 5.1: Files table on MySQL server

This table is then filled with the data from the data structure shown on Fig-
ure 5.2 using the function DoTheDBThing, shown on Figure 5.2. DoTheDBThing
loops over the data just like DownloadContent does and prepares a SQL statement
for each file in the database. This statement is then send to the database instance
created on line 4 in Code-block 5.4.

1 func DoTheDBThing ( ) {
2 data := fmt . Sprintf ( "%s :%s@tcp(%s :%d )/%s " ,
3 user , password , host , port , dbname )
4 db , err := sql . Open ( " mysql " , data )
5 i f err != n i l {
6 log . Fatal ( err )
7 }
8 defer db . Close ( )
9 f o r i , c := range courses . Courses {

10 f o r j , t := range courses . Courses [ i ] . Topics {
11 f o r _ , k := range courses . Courses [ i ] . Topics [ j ] . Content {
12 sqlStatement := fmt . Sprintf ( " INSERT INTO ` F i l e s ` ( course , topic , ←↩

f i lename ) VALUES ( '% s ' , '% s ' , '% s ' ) ; " , c . Name , t . Name , k . Name )
13 fmt . P r i n t l n ( sqlStatement )
14 fmt . P r i n t l n ( k )
15 err = db . QueryRow ( sqlStatement ) . Scan ( )
16 i f err != n i l {
17 log . P r i n t l n ( err )
18 }
19 }
20 }
21 }
22 }

Code-block 5.4: DoTheDBThing function

With these functions examined a conclusion is made, concluding whether the
Moodle scraper fit the requirements established in Section 4.2.1.



5.3. Database implementation 53

5.2.3 Subsidiary conclusion

This section will conclude on implementation of the Moodle scraper by taking
each of the requirements from Section 4.2.1 and evaluate whether it is met by the
implemented code. The section will end with a list of features that are to develop
towards for future development.

Starting with the first requirement, which is that the Moodle scraper should
be able to find content on a Moodle server. This requirement is meet with the
functions FindCourses and findTopics, however these functions does not support all
the file formats that Moodle does so this can be expanded to also support these.
The second requirement is that the Moodle scraper should be able to download
the found content, this is also met for the file formats supported by FindCourses
and findTopics. Adding more file formats will require that more functions is added
handling the specific formats. In Section 5.2.2 it is explained how the scraper saves
the files according to the structure described in Section 3.1.2 which is the third
requirement.

The last two requirement addresses the use of ETags as concurrency verifica-
tion. When a file is downloaded the HTTP header is checked whether it contains
an ETag, if it does this ETag is compared to the local JSON database using the
FindFile function. This function can be seen on line 72-86 in Appendix .3.2, this
means that the last two requirements is met. With all the requirements met some
points of development is established.

As previously mentioned all types off content on Moodle is not supported
yet, some of the missing types is quizzes and forums, which both could improve
the system greatly. Especially quizzes as it will help provide data on the course
progress and understanding by the Brazilian waste pickers. Another point that
could be improved is function for submitting answers from specific users in order
to scrape grades. The scrapers multi threading could also be improved to make
the scraper more efficient, this could starting a thread for each course as well and
improving protection against race conditions. The function for adding files to the
MySQL database could also be improved so that is checks if the file exists in the
database already. With the Moodle scraper examined the different databases is
examined.

5.3 Database implementation

This section will examine how the databases discussed in Section 3.3.1 is imple-
mented and how the caching server and smartphone application can communicate
with it in order to authenticate users and receive a list of files. The section will
also give an example of all the tables within the database. Firstly the database



5.3. Database implementation 54

for user authentication is examined, hereunderwhich tables might be added if the
functionality is expanded, like implementing quizzes and grades in the applica-
tion. After examining all the tables handling user information the tables handling
files is examined.

Before all of that a short examination into which database system and how it is
implemented is taken. In Section 3.3.1 it is concluded that MySQL fits our needs,
being able to handle multiple requests at the same time. MySQL also supports
connected tables meaning that login information can be in one table and statistics
can be in another.

Our MySQL server is installed on cloud computer rented from Amazon Web
Services(AWS) together with Apache2, PHP and PHPMyAdmin. Apache2 is a
HTTP server, which means that it will be able to send HTTP requests to the server
these will then be processed by our PHP-scripts. These will in turn be able to com-
municate with the database and create an API Facilitating authentication: create
and delete users in the database, by sending a HTTP request. PHPMyAdmin will
allow the management of the databases from a graphical interface instead of doing
it using the command line. With the basics in place an examination of the user
tables is done.

5.3.1 User tables

This section documents how information is stored in the table and how it is ac-
cessed through the PHP-scripts. Before this can be done an overview of the user
table i given.

The main table is the users table also explained in Section 3.3.1, the table con-
tains the the columns id, username, password, email and phone, structured as seen
on Table 5.2. Id is an integer which increments by one each time a new user is cre-
ated, the username is a string picked by the user, the password is the sha1 hash of
the password picked by the user.

id username password email phone

1 user1 f249ff8dcd6675e9a some@mail.br 54854548

2 user2 f249ff8dcd6675e9a some@mail.bk 54854538

3 user3 f249ff8dcd6675e9a some@mail.eu 54854528

4 user4 f249ff8dcd6675e9a some@fail.br 54854518

Table 5.2: Users table on MySQL server

This table can be accessed sending a POST request to the server. The two
functionalities build at this stage is to register a new user and login an existing



5.3. Database implementation 55

user. These functionalities are handled by the PHP-scripts userLogin.php and regis-
terUser.php, which will be examined hereunder.

Starting with userLogin.php, this PHP-script starts by including the script Db-
Operations, see Appendix .4.3, this script contains all the functions for preparing
SQL statements based on the inputs given. On line 4, in Code-block 5.5, the script
ensures that the HTTP method used is POST, after that it check if a username and
password is set in the request, if it is then the then is is passed to the login function
within DbOperations.

1 <?php
2 require_once ' . . / inc ludes/DbOperations . php ' ;
3 $response = array ( ) ;
4 i f ( $_SERVER [ 'REQUEST_METHOD ' ] == 'POST ' ) {
5 i f ( isset ( $_POST [ ' username ' ] ) and isset ( $_POST [ ' password ' ] ) ) {
6 $db = new DbOperations ( ) ;
7 i f ( $db−>userLogin ( $_POST [ ' username ' ] , $_POST [ ' password ' ] ) ) {
8 $user = $db−>getUserByUsername ( $_POST [ ' username ' ] ) ;
9 $response [ ' e r r o r ' ] = f a l s e ;

10 $response [ ' id ' ] = $user [ ' id ' ] ;
11 $response [ ' username ' ] = $user [ ' username ' ] ;
12 $response [ ' email ' ] = $user [ ' email ' ] ;
13 $response [ ' phone ' ] = $user [ ' phone ' ] ;
14 $response [ ' message ' ] = " Logged in s u c c e s s f u l l y " ;
15 } e l s e {
16 $response [ ' e r r o r ' ] = t rue ;
17 $response [ ' message ' ] = " I n v a l i d username or password " ;
18 }
19 } e l s e {
20 $response [ ' e r r o r ' ] = t rue ;
21 $response [ ' message ' ] = " Required f i e l d s are missing " ;
22 }
23 }
24 echo json_encode ( $response ) ;
25 ?>

Code-block 5.5: PHP-script for logging in

After logging in it calls the function getUserByUsername and writes the results to
the HTTP response that will be send to the smartphone application. This concludes
the userLogin.php and a look into the registerUser.php can be taken.

1 <?php
2 require_once ' . . / inc ludes/DbOperations . php ' ;
3 $response = array ( ) ;
4 i f ( $_SERVER [ 'REQUEST_METHOD ' ] == 'POST ' ) {
5 i f ( isset ( $_POST [ ' username ' ] ) and isset ( $_POST [ ' email ' ] ) and isset ( $_POST [ '←↩

password ' ] ) and isset ( $_POST [ ' phone ' ] ) ) {
6 $db = new DbOperations ( ) ;
7 $result = $db−>createUser (
8 $_POST [ ' username ' ] ,
9 $_POST [ ' password ' ] ,

10 $_POST [ ' email ' ] ,



5.3. Database implementation 56

11 $_POST [ ' phone ' ] ) ;
12 i f ( $result == 1) {
13 $response [ ' e r r o r ' ] = f a l s e ;
14 $response [ ' message ' ] = " User r e g i s t e r e d s u c c e s s f u l l y " ;
15 } elseif ( $result == 0) {
16 $response [ ' e r r o r ' ] = t rue ;
17 $response [ ' message ' ] = " User already e x i s t s , p lease choose a ←↩

d i f f e r e n t email and username " ;
18 } elseif ( $result == 2) {
19 $response [ ' e r r o r ' ] = t rue ;
20 $response [ ' message ' ] = "An e r r o r occurred , Please t r y again " ;
21 }
22 } e l s e {
23 $response [ ' e r r o r ' ] = t rue ;
24 $response [ ' message ' ] = " Required f i e l d s are missing " ;
25 }
26 } e l s e {
27 $response [ ' e r r o r ' ] = t rue ;
28 $response [ ' message ' ] = " I n v a l i d Request " ;
29 }
30 echo json_encode ( $response ) ;
31 ?>

Code-block 5.6: PHP-script for registering a new user

Like userLogin.php, registerUser.php starts by including DbOperations and check-
ing the HTTP method of the request. Following that, it checks whether all the
information that is needed is within the request. This is then passed to createUser
from DbOperations and the return values is checked to see if any errors occurred.

These two functionalities are the ones that are created, but as explained in
Section 3.3.1 some thoughts to how to build the rest have been made. The concept
is to create another table containing synchronization data, like last synchronization
and average time between synchronizations both measured in seconds, so that that
the table looks like Table 5.3.

userid last sync average

1 1558426608 86400

2 1558424648 432000

3 1558426336 43200

4 1558433333 1209600

Table 5.3: Table containing synchronizations data

The userid column can then be linked to the id in the users table using one of
the SQL JOIN commands depending on the set up the same goes if a table of all
synchronizations is created which can be used to calculate the average in Table 5.3,
then each synchronization can be linked to the user. The relation between the users
table and a table containing synchronizations is illustrated on Figure 5.3.



5.3. Database implementation 57

synchronizations

syncid

userid

synctime

progress

users

id

username

password

email

phone

Figure 5.3: Illustration of how the databases is connected

But as previously stated, these tables are not created yet as the functionality is
not implemented in the caching system. This leads into the next section, that will
be documenting the tables for storing the course files.

5.3.2 Course tables

This section will examine the way that information about courses stored on the
MySQL server. Specifically, how it can be extracted and thoughts about this could
be improved. At the current implementation stage, only table containing informa-
tion about the content on the server is the Files table, which is also described in
Section 5.2.2, the table contains all the files on the server. The table is structured
like Table 5.4, containing course name, topic name and a file name.

Course name Topic name File name

test-course-1 test-topic data.csv

test-course-1 test-topic tasks.docx

test-course-2 test-topic summary.txt

test-course-4 test-topic something.pdf

Table 5.4: Files table on MySQL server

This table can be accessed by navigating to fetchCourses.php this will provide
output the content of the table.

1 <?php
2 require_once ' . . / inc ludes/Constans . php ' ;



5.3. Database implementation 58

3 // Create connect ion
4 $con = mysqli ( DB_HOST , DB_USER , DB_PASSWORD , DB_NAME ) ;
5 // Check connect ion
6 i f ( ! $con ) {
7 die ( " Connection f a i l e d : " . mysqli_connect_error ( ) ) ;
8 }
9

10 $sql = "SELECT course , topic , f i lename FROM F i l e s " ;
11 $result = mysqli_query ( $con , $sql ) ;
12 i f ( mysqli_num_rows ( $result ) > 0) {
13 // output data of each row
14 while ( $row = mysqli_fetch_assoc ( $result ) ) {
15 echo " course : " . $row [ " course " ] . " − Name: " . $row [ " t o p i c " ] . " − Name:←↩

" . $row [ " f i lename " ] . "<br>" ;
16 }
17 } e l s e {
18 echo " 0 r e s u l t s " ;
19 }
20 mysqli_close ( $con ) ;
21 ?>

Code-block 5.7: PHP-script for listing all files on the server

It starts by including Constans.php which is the file containing the login information
for our MySQL server and the use this to open a new connection to the database.
Then the SQL statement created on line 10 on Code-block 5.7 is send to the server
which will return all row as nothing else is specified. Then the while loop on line 14
takes each of these and echoes them out as HTML, before the connection is closed
back down. If this script should be improved it should do an user authentication
before writing out the content of the table. This could be done by building it
together with DbOperations using the login function in this file. Another thing that
could be improved is they way the files is stored in the database, it might be an
idea to create more table like one containing only courses. This could probably
make it easier to keep track of which user is working on which course. With some
improvements for the the course tables listed, a final conclusion on the database
implementation can be made.

5.3.3 Subsidiary conclusion

This section will conclude on the database by looking at the database relevant re-
quirements in Section 4.2.2 and evaluating if they are met by the implemented
system. As the database is only a part of the caching server not all requirements
have to be met in this section, they will also be examined in Section 5.4.1 before
a final conclusion on the system and all subsystems is made in Section 5.6. This
section will also summarize the improvements found to help with future develop-
ment. The requirements relevant for the database system is the following.

• Receive Requests.
• Write Responses.



5.4. Caching 59

• Save stats from application.
• Perform CRUD on users.
• Handle several users simultaneously.
• User password recovery.

Starting from the first requirement is that the caching server should be able to
receive HTTP requests, which goes hand in hand with the second requirement.
Both of those are met by the the PHP-scripts userLogin.php, registerUser.php and
fetchCourses.php as they receive a HTTP and responds as JSON or plain HTML
depending on the function. These functions also take care of most of the fourth
requirement that the system should be able to perform CRUD on the users. As
userLogin.php and registerUser.php allow for the creation of users and reading their
data from the database. However, the U and D part is not implemented yet. This
also means that the requirement stating that the system should have password
recovery is also not met in this version of the system.

The next requirement is that the system should be able to save stats from the
application, this part is not yet implemented, as the logging system in smartphone
application in not implemented yet anyways.

The last requirement is that the system should be able to handle multiple users.
This is met as the database allows us for creating a table containing a lot of users,
the system is also cable of handling multiple requests as the time making it a
double check.

To summarize the things that should be either developed or improved, starting
with the PHP-script fetchCourses.php. This should use the already implemented
authentication system to verify that it is an actual user that access the site. Another
thing that should be done is creating tables for storing the stats coming from the
application. While in same take restructuring the tables containing the content
information optimizing them to store information about participants as well.

With the database implementation examined the next step is to examine the
smart caching implementation.

5.4 Caching

This section will be examining how much of the smart caching explained in Sec-
tion 3.3 is implemented. As explained in Section 3.3 the caching server is split up
into two parts, there are the databases, which implementation explained in Sec-
tion 5.3, and then there are the caching algorithm and with that a server cable of
sending data also comes.

This section will be based on an examination of the requirements established in
Section 4.2.2. Some of the requirements are already met by the database system as
explained in Section 5.3.3, like the possibility to handle HTTP traffic. However, in
order to make the smart caching work probably some of this need to be modified



5.5. App 60

drastically. For example the way files is transferred should be changed so that it
is the server that is in control instead of the smartphone application just grabbing
a file path from a database. The server should just send data to the smartphone
based on the information received as explained in Section 3.3.2.3. The initial plan
was to create some kind heartbeat package, which could be send with a given
interval while connected to a Wi-Fi, containing all the necessary user statistics.
However, progress did not get to this stage, as there is time left after getting a basic
file transfer up and running between the application and the server.

Which mean that the implementation is done with the PHP-scripts explained
in Section 5.3 running on an Apache2 server. Which allow us to place the files in
a specified folder on the server and generate a URL to each file which can then
be downloaded by the application by sending a simple HTTP GET request to this
URL. With the explanation of the small bit of the smart caching that was completed,
the next step is to look at the requirements.

5.4.1 Subsidiary conclusion

This section will section will conclude on the caching implementation involving
the database conclusion, see Section 5.3.3 as they should function as one in a final
product.

As described both in Section 5.3.3 and Section 5.4 the two first requirements are
met to some extent just not in the way original specified. The next requirement is
that the caching should have access to the local files, which it does, the files how-
ever must be places in the right folder in order to be accessible from the internet.
The requirement stating that the Moodle scraper should run at a set interval is not
met yet. The reason for that is that it would make more sense to build it into the
caching systems so that is runs whenever the server have spare resources instead of
forcing a scrape while busy. As the database for storing stats from the application
is not implemented yet this removes the possibility to meet the requirements:

• Save stats from application.
• Determine the amount of data to be sent.
• Display stats graphically.

As these requirements rely on the ability to access a database containing the infor-
mation that it needs in order to do these things. With all the requirements to the
caching server assessed in this section and Section 5.3.3 the next step is taking a
look at the implementation of the smartphone application.

5.5 App

This section will document the implementation of the Android application. This
includes but is not limited to:



5.5. App 61

1. Constants
2. Basic navigation
3. User identification
4. Course facilitation
5. Data collection

With the implementation of these parts of the Android application described
a summary of the implementation is done, followed by showcasing the caching
mechanism implemented in the project.

5.5.1 Constants

The constants used within the Android application is the link to each of PHP-
scrips allowing the application to communicate with the caching server hereunder
the MySQL server.

1 publ ic c l a s s Constants {
2 //Defines the root URL. This i s a s e l e c t a b l e root in t h i s p r o j e c t s case i t i s←↩

in the AWS server on /var/www/html/
3 p r i v a t e s t a t i c f i n a l String ROOT_URL =" ht tps :// save−b r a z i l . l a n e s t o l e n . dk/←↩

android/v1/" ;
4

5 //Defines the d i f f e r e n t s c r i p t s t h a t the phone c a l l s
6 publ ic s t a t i c f i n a l String URL_REGISTER = ROOT_URL+" r e g i s t e r U s e r . php" ;
7 publ ic s t a t i c f i n a l String URL_LOGIN = ROOT_URL+" userLogin . php" ;
8 publ ic s t a t i c f i n a l String URL_GETDATA = ROOT_URL+" fetchCourses . php" ;
9 }

Code-block 5.8: The constants within the java button

These PHP-scripts are the ones explained in Section 5.3, and the usage of these
constants is to help simplify code later on, when different the PHP-scripts are used.
With this is mind, the way in which basic navigation is implemented within the
application can be documented.

5.5.2 Basic navigation

The users need to navigate throughout the Android application as it is the end
user product. The basic way in which to navigate to different screens is by moving
between "activities". An activity is essentially a screen with its own functions,
both being visually different for the user as well as having its own background
functions.

In the current implementation of the Android application the following activi-
ties exists:

• MainActivity: The user registeration screen
• LoginActivity: The user login screen



5.5. App 62

• ProfileActivity: The main user screen
• SettingsActivity: The settings screen

These activities can be navigated by different means. The simplest of which is to
simply start a new activity via a trigger such as a button click. In the ProfileActivity
the SettingsActivity can for example be navigated as shown here:

1 buttonSettings . setOnClickListener (new View . OnClickListener ( ) {
2 @Override
3 publ ic void onClick ( View v ) {
4 startActivity (new Intent ( ProfileActivity . t h i s , SettingsActivity . c l a s s ) ) ;
5 }
6 } ) ;

Code-block 5.9: Simple on button press navigation

In this way of navigation, the new activity is opened, however the old one
remains open in the background. This means that pressing the "back" key built
into android (implementation vary from phone to phone), will simply return the
user to the previous activity. If a user logs out, it would be pretty bad if the user
could go back into his / her account by pressing the back key. For this reason it is
tested if the user is logged in. If it is found that they are not the finish() function is
called. This simply closes the current activity.

1 i f ( ! SharedPrefManager . getInstance ( t h i s ) . isLoggedIn ( ) ) {
2 finish ( ) ;
3 startActivity (new Intent ( t h i s , LoginActivity . c l a s s ) ) ;
4 }

Code-block 5.10: Simple on button press navigation where the old activity is closed.

In this example the SharedPrefManager is called and the script detecting if the
user is logged in is called. If the user is not logged in then they are sent back
to the LoginActivity (the login screen) and the old ProfileActivity is closed. This
is essentially how navigation between screens and activities work within this im-
plementation of the Android application. Of course this would not be possible
without the users actually being identifiable, therefore the implementation of the
user identification system is examined.

5.5.3 User identification

As shown in the requirements specification, the Android application must be able
to differentiate users. This section will go into how this is implemented within
the android application. Firstly the way in which the users register within the
application is explained and then the way in which they login.



5.5. App 63

5.5.3.1 Registering user

The first screen a new user is presented with is the user registration screen. Within
the screen the user has four text fields to input and a button to register, and a way
in which to get to the login screen in case they already have a user as seen on
Figure 5.4.

Figure 5.4: The android registeration screen

Whenever the user presses the register user button an OnClickListener shown
on Code-block 5.11, is used.

1 publ ic void onClick ( View view ) {
2 i f ( view == buttonRegister )
3 registerUser ( ) ;
4 }

Code-block 5.11: On click listener for user register

This in turn calls registerUser() function which is shown on Code-block 5.12.

1 p r i v a t e void registerUser ( ) {
2 f i n a l String email = editTextEmail . getText ( ) . toString ( ) . trim ( ) ;
3 f i n a l String username = editTextUsername . getText ( ) . toString ( ) . trim ( ) ;
4 f i n a l String password = editTextPassword . getText ( ) . toString ( ) . trim ( ) ;
5 f i n a l String phone = editTextPhone . getText ( ) . toString ( ) . trim ( ) ;
6

7 progressDialog . setMessage ( " R e g i s t e r i n g user . . . " ) ;
8 progressDialog . show ( ) ;
9 StringRequest stringRequest = new StringRequest ( Request . Method . POST ,

10 Constants . URL_REGISTER ,



5.5. App 64

11 new Response . Listener<String > ( ) {
12 @Override
13 publ ic void onResponse ( String response ) {
14 progressDialog . dismiss ( ) ;
15

16 t r y {
17 JSONObject jsonObject = new JSONObject ( response ) ;
18

19 Toast . makeText ( getApplicationContext ( ) , jsonObject .←↩
getString ( " message " ) , Toast . LENGTH_LONG ) . show ( ) ;

20

21 } ca tch ( JSONException e ) {
22 e . printStackTrace ( ) ;
23 }
24 }
25 } ,
26 new Response . ErrorListener ( ) {
27 @Override
28 publ ic void onErrorResponse ( VolleyError error ) {
29 progressDialog . hide ( ) ;
30 Toast . makeText ( getApplicationContext ( ) , error . getMessage ( ) , ←↩

Toast . LENGTH_LONG ) . show ( ) ;
31 }
32 } ) {
33 @Override
34 protec ted Map<String , String> getParams ( ) throws AuthFailureError {
35 Map<String , String> params = new HashMap < >() ;
36 params . put ( " username " , username ) ;
37 params . put ( " email " , email ) ;
38 params . put ( " password " , password ) ;
39 params . put ( " phone " , phone ) ;
40 re turn params ;
41 }
42 } ;
43

44 RequestHandler . getInstance ( t h i s ) . addToRequestQueue ( stringRequest ) ;
45

46 }

Code-block 5.12: The user registration

Firstly, a string for all four input fields are made. Since the input fields are in
text and not string formats, they must be converted. Then a progressDialog is used
to keep the user updated on what the function is doing. In this implementation a
simple print or Toast in Android would have sufficed, but the progressDialog can be
more easily expanded.

Then a StringRequest as shown in Section 3.2.7 is used to send a POST request
to the URL_REGISTER as defined in a constants Java file. This URL_REGISTER is
a PHP-script and how it functions is shown in Section 5.3. For the applications
purpose this PHP-script sends a response to the application. In case of an error in
the script it will send a response in JSON and this response is then printed.

The Volley library also requires an error listener, which will give an error in case
of lost connection. In case an error occurs, the error message is printed. If no errors
occurs, then the application will proceed to insert parameters into the parameters.



5.5. App 65

Finally it is all sent to the request handler. With this the user has finally created
a user and a Toast (a popup) will display the message received from the server in
this case "User successfully created". Optimally the user would then automatically
be logged in, however this is not the case in the current implementation. Therefore
the login screen and hereby code is used next.

RequestHandler On line 44 on Code-block 5.12, a request handler is called,
which is used in order to make it simpler to send requests compared to program-
ming a RequestQueue every time communication with the server is needed. The
code behind that is very simple and will not be examined. What the RequestHandler
does is startup and insert the stringRequest into the RequestQueue. It is only after it
is added to the RequestQueue that the stringRequest is actually sent.

5.5.3.2 User login

The user login feature requires that the data being inputted in the Android appli-
cation is compared with the MySQL database containing the users. While the user
has given both a username and a phone, they will not be used for this login. This is
simply to save time for the user, and requiring four fields perfectly filled out, could
prove a tall order. Especially for the waste pickers with trouble reading and writ-
ing. Just as in the MainActivity register, the login sequence is started by first filling
out text fields and then pressing a button with an assigned OnClickListener. When
the user presses the login then the code show on Code-block 5.13 is executed.

1 p r i v a t e void userLogin ( ) {
2 f i n a l String username = editTextUsername . getText ( ) . toString ( ) . trim ( ) ;
3 f i n a l String password = editTextPassword . getText ( ) . toString ( ) . trim ( ) ;
4

5 progressDialog . show ( ) ;
6 StringRequest stringRequest = new StringRequest (
7 Request . Method . POST ,
8 Constants . URL_LOGIN ,
9 new Response . Listener<String > ( ) {

10 @Override
11 publ ic void onResponse ( String response ) {
12 progressDialog . dismiss ( ) ;
13

14 t r y {
15 JSONObject obj = new JSONObject ( response ) ;
16 i f ( ! obj . getBoolean ( " e r r o r " ) ) {
17 SharedPrefManager . getInstance (←↩

getApplicationContext ( ) )
18 . userLogin (
19 obj . getInt ( " id " ) ,
20 obj . getString ( " username " ) ,
21 obj . getString ( " email " ) ,
22 obj . getInt ( " phone " ) ) ;
23



5.5. App 66

24 startActivity (new Intent ( getApplicationContext ( ) ,←↩
ProfileActivity . c l a s s ) ) ;

25 finish ( ) ;
26

27 //After the e r r o r check code , i t i s then added to←↩
the request queue

Code-block 5.13: The login script in the LoginActivity

As in the user register code, the first thing is to take the input for username and
password and turn them into strings. Then a POST request with the two strings are
setup to the URL_LOGIN which once again is a PHP-script on the server explained
in Section 5.3. Depending on the response from the PHP-script several things
can happen. In case of a successful login, the user data (id username email and
phone) are returned to the application and the user is moved to the ProfileActivity.
As described in Section 5.5.2, the previous activity LoginActivity is closed due the
finish() command. Just as with the register user code, both JSON has an error
reader as well as Volley. With the user being able to both register and login, the
course facilitation is the next step for the application. It should be noted this is not
the complete code as all the error listener are the same. In order to actually send
the string to the server the the request handler is called.

5.5.4 Shared Preferences

In order to simplify the code used in different activities a SharedPrefManager man-
ager is used. This deals with a lot of the formatting and checking on the user. For
example it is used in the user login code in Code-block 5.13. In that use case it to
read the different variables inserted by the MySQL database as a response in case
of a successful login. Furthermore the SharedPrefManager also does the checks if
the user is logged in and the user logout.

1 publ ic boolean userLogin ( i n t id , String username , String email , i n t phone ) {
2

3 SharedPreferences sharedPreferences = ctx . getSharedPreferences (←↩
SHARED_PREF_NAME , Context . MODE_PRIVATE ) ;

4 SharedPreferences . Editor editor = sharedPreferences . edit ( ) ;
5 editor . putInt ( KEY_USER_ID , id ) ;
6 editor . putString ( KEY_USERNAME , username ) ;
7 editor . putString ( KEY_USER_EMAIL , email ) ;
8 editor . putInt ( KEY_USER_PHONE , phone ) ; ;
9

10 editor . apply ( ) ;
11

12 re turn true ;
13 }
14

15 //Checks i f the user i s logged in
16 publ ic boolean isLoggedIn ( ) {



5.5. App 67

17 SharedPreferences sharedPreferences = ctx . getSharedPreferences (←↩
SHARED_PREF_NAME , Context . MODE_PRIVATE ) ;

18 i f ( sharedPreferences . getString ( KEY_USERNAME , n u l l ) != n u l l ) {
19 re turn true ;
20 }
21 re turn f a l s e ;
22 }
23

24 //Logs the user out
25 publ ic boolean logout ( ) {
26 SharedPreferences sharedPreferences = ctx . getSharedPreferences (←↩

SHARED_PREF_NAME , Context . MODE_PRIVATE ) ;
27 SharedPreferences . Editor editor = sharedPreferences . edit ( ) ;
28 editor . clear ( ) ;
29 editor . apply ( ) ;
30 re turn true ;
31 }

Code-block 5.14: Simple on button press navigation where the old activity is closed.

The SharedPrefManager checks if the user is logged in, by checking if the user-
name key is not empty. Of course the actual login check is done when the login
click as shown in Code-block 5.13 is called, and only then is the username inserted
into the sharedPreferences editor. This means that the editor should only have a
non-empty key when the user has successfully logged in.

Lastly the user must also be able to log out. In the SharedPrefManager it works
by simply clearing all fields in the editor, making it look like no user is there. The
logout function simply calls SharedPrefManager.getInstance(context).logout() and that
way it is cleared. Finally as shown in basic navigation in Section 5.5.2 the user is
then taken back to the LoginActivity and the old activity is closed via the finish()
command.

5.5.5 Retrieving the file data

In order to facilitate the courses, they must first be downloaded to the application.
However the file names and location on the server isn’t known. If only certain con-
stant files have to be downloaded the simplest way of downloading them would
be by just inserting them as an array into the DownloadManager. How this Down-
loadManager works can be found on in the documentation[14]. Since the files are
dynamically changed by the Moodle scraper as described in Section 5.2.1, the file
names and folders will update as described in Section 5.3.2. In order to get the
full file names as well as its location within the caching server the code shown on
Code-block 5.15 is used.

1 p r i v a t e void sendGetRequest ( ) {
2 i f ( isWifiConn = true ) {
3 StringRequest stringRequest = new StringRequest (
4 Request . Method . GET ,



5.5. App 68

5 Constants . URL_GETDATA ,
6 new Response . Listener<String > ( ) {
7 @Override
8 publ ic void onResponse ( String response ) {
9 t r y {

10 outputStream = openFileOutput ( filename , Context .←↩
MODE_PRIVATE ) ;

11 outputStream . write ( response . getBytes ( ) ) ;
12 outputStream . close ( ) ;
13 } ca tch ( Exception e ) {
14 e . printStackTrace ( ) ;
15 }
16 }
17 } , new Response . ErrorListener ( ) {
18 @Override
19 publ ic void onErrorResponse ( VolleyError error ) {
20 debugtext . setText ( "A network e r r o r has occured " ) ;
21 }
22 } ) ;
23 RequestHandler . getInstance ( t h i s ) . addToRequestQueue ( stringRequest ) ;
24 }
25 }

Code-block 5.15: File information retrieval

As the goal is to minimize the amount of cell phone data used, the first thing
done is to check if there is an active internet connection. This is done as described
as in android technical analysis as shown in Section 3.2.6. With internet connection
over Wi-Fi established, the Android application can begin sending data. Just as
with the user registration and login, this is done via HTTP whilst calling a PHP-
script on the server as described in Section 5.3. In this it is URL_GETDATA as
defined in the constants Section 5.5.1. The string response that the PHP-script
provides a response that the Android application must store. Since this data could
be stored for a longer period of time, it makes sense to save it in a file. This
is implemented under filename where the string response is saved. The filename
chosen is Stuff.txt meaning the string response from the caching server will be
saved in the Android applications internal storage under Stuff.txt

1 String filename = " S t u f f . t x t " ;

Code-block 5.16: The filename used

Exactly as with the other requests a Volley ErrorListener is implemented, in case
of network errors. As described in Section 5.3 the data the PHP-script responds
with is: "course/topic/filname.filetype; The course and topic being folders and the
filename being the actual file and type being its format. Having this data collected
now means the Android application can commence the downloading of the files.



5.5. App 69

5.5.6 Downloading and saving files

The current version of the downloading script is non-dynamic. Meaning that it
only downloads a test file. How a dynamic implementation could be made is
described throughout this section. Downloading a file in Android can be done rel-
atively simply trough a built in library called DownloadManager[14]. This down-
load manager is able to get files via HTTP requests. The implementation in the
application is seen on Code-block 5.17

1 publ ic void Download_Click ( View view ) {
2 downloadManager = ( DownloadManager ) getSystemService ( DOWNLOAD_SERVICE ) ;
3 DownloadManager . Request request = new DownloadManager . Request ( Uri . parse ( "←↩

ht tps :// save−b r a z i l . l a n e s t o l e n . dk/ t e s t . mp4" ) ) ;
4

5 request . setAllowedNetworkTypes (
6 NETWORK_WIFI )
7 . setDestinationInExternalPublicDir ( "/sb " , " t e s t . mp4" ) ;
8

9 File sdCard = Environment . getExternalStorageDirectory ( ) ;
10 String folder = sdCard . getAbsolutePath ( ) + "/sb " ;
11 File dir = new File ( folder ) ;
12 i f ( ! dir . exists ( ) ) {
13 i f ( dir . mkdirs ( ) ) {
14 }
15 }
16

17 queueid = downloadManager . enqueue ( request ) ;
18 }

Code-block 5.17: The filename used

Firstly the DownloadManager is called and the context is set to getSystemSer-
vice(DOWNLOADSERVICE which defines that the DownloadManager is about to be
used to download files via a HTTP request. Then the destination of the request
needs to be set. In this case it is set to https://save-brazil.lanestolen.dk/test.mp4 on
line 3. To make this a dynamic system this must be changed to a variable defined
from the information gathered from the file data retrieving system inside Stuff.txt.
Critically this is the part of the communication which takes by far the heaviest data
footprint. If for example as 20 minute full HD video file needs to be downloaded,
then this would be rather sizable. Therefore the request.setAllowedNetworkTypes is
set to only allow download over Wi-Fi.

With this defined, the way in which the file is to be saved must be done. As
described inside the Android technical analysis, API 19 is chosen and in here the
permissions needed is utilized. The external storage access which became available
in API 19 is now used to mount the files to the phones storage. Firstly the path
is defined and then the filename. These should then be dynamically defined by
variables as well and run in a loop.

Lastly, it is needed to ensure that the folder the Android application is trying



5.5. App 70

to save in exists or it is needed to create a new folder. This is done in the last part
of the code.

Lastly the request is sent via the: downloadManager.enqueue(request) It is notable,
that this uses its own request queue and not the RequestHandler, since the Down-
loadManager uses its own request system. In order for this system to function the
application must have permissions and the implementation of a permission system
is documented next.

5.5.7 Permissions

In Android, different permissions are required to accomplish different thing. Firstly
the permissions defined needed is done in the AndroidManifest.xml file. Since the
application uses the internet, a permission is needed for that. It also turns out that
Android requires the user to have given permission for an application to read and
write to the external storage. This means that the following lines are needed in the
AndroidManifest.xml

1 <uses−permission android:name=" android . permission . INTERNET" />
2 <uses−permission android:name=" android . permission .READ_EXTERNAL_STORAGE" />
3 <uses−permission android:name=" android . permission .WRITE_EXTERNAL_STORAGE" />

Code-block 5.18: The permissions in the Android manifest

While this tells the Android application that these permissions are needed, the
user must consent to the external storage. In some versions of Android they also
need to consent to the application using the internet. While this can be done simply
by doing a one time popup, it can have issues if the user at some points removes
these permissions in their phones settings. Therefore a check is made every time
the user either boots up the application for the first time, or whenever the user
reaches the main screen. How this is done can be seen on Code-block 5.19.

1 p r i v a t e void veryPermissions ( ) {
2 String [ ] permissions = { Manifest . permission . READ_EXTERNAL_STORAGE ,
3 Manifest . permission . WRITE_EXTERNAL_STORAGE ,
4 Manifest . permission . INTERNET } ;
5

6 i f ( ContextCompat . checkSelfPermission ( t h i s . getApplicationContext ( ) ,
7 permissions [ 0 ] ) == PackageManager . PERMISSION_GRANTED &&
8 ContextCompat . checkSelfPermission ( t h i s . getApplicationContext ( ) ,
9 permissions [ 0 ] ) == PackageManager . PERMISSION_GRANTED &&

10 ContextCompat . checkSelfPermission ( t h i s . getApplicationContext ( ) ,
11 permissions [ 0 ] ) == PackageManager . PERMISSION_GRANTED ) {
12 //We are confirmed
13 } e l s e {
14 ActivityCompat . requestPermissions ( ProfileActivity . t h i s ,
15 permissions ,
16 MY_PERMISSIONS_REQUEST ) ;
17 }



5.5. App 71

18 }

Code-block 5.19: The permission request system

Firstly a String array is used to save the different requests. Then a test is run to see
if the permissions are granted for all three requirements. If they are not granted
a permissions request is sent to the user. In case the user does not grant access
to the data storage system, making course facilitation impossible. Furthermore it
means that the file download will not work, due to a lack of permissions. This
completes the permission implementation. With permissions now complete, the
course facilitation implementation can be explored.

5.5.8 Course facilitation

In order to facilitate the course a simple file explorer is used. This means that in
case the user presses the button "pick", then a file browser is opened. Optimally
this is opened in the main folder of the saved courses. Allowing the user to firstly
select a course, then a topic and finally which file to open. There are many ways
of the different ways of using a file explorer / picker. In this implementation the
material file picker is used [39]. This file picker opens the external storage upon a
button press.

1 button . setOnClickListener (new View . OnClickListener ( ) {
2 @Override
3 publ ic void onClick ( View v ) {
4 new MaterialFilePicker ( )
5 . withActivity ( ProfileActivity . t h i s )
6 . withRequestCode ( 1 0 0 0 )
7 . start ( ) ;
8 }
9 } ) ;

Code-block 5.20: The filename used

1 @Override
2 protec ted void onActivityResult ( i n t requestCode , i n t resultCode , Intent data ) {
3 super . onActivityResult ( requestCode , resultCode , data ) ;
4

5 i f ( requestCode == 1000 && resultCode == RESULT_OK ) {
6 String filePath = data . getStringExtra ( FilePickerActivity . RESULT_FILE_PATH←↩

) ;
7 //open f i l e . TBD
8 debugtext . setText ( filePath ) ;
9 }

10 }

Code-block 5.21: The filename used



5.5. App 72

Firstly an OnClickListener sees if the button is pressed. In case it starts up the
file picker and sends a requestCode of 1000 (default for the library) and starts the
MaterialFilePicker. Once the filer picker has selected a file, the debugtext is set to the
exact location of the file including the filename. Of course this should be opened,
but this is not yet supported inside the application, as the default way of opening
files, wherein the phone simply asks what the file should be opened with, does
not work with the MaterialFilePicker. Moreover a bug within the MaterialFilePicker,
means that a top menu cannot be used to a rather complicated conflict, that has
not been solved. Because of these two issues, a point of further development is to
change the MaterialFilePicker to something else. This concludes the course facilita-
tion of the application, and the data collection will be examined next.

5.5.9 Data collection

Since the smart caching system needs the data described in Section 3.2.5, the An-
droid application must be able to record this data. While Android has a built in
library called Log, the data collection part of the Android application has not been
implemented. This means that Log is not used in the current implementation. This
must therefore be done at a later date in order to properly begin the smart caching
implementation as described in Section 5.4. With this quickly examined, a final
conclusion on the Android application is done.

5.5.10 Subsidiary conclusion

The Android application in its current implementation, completes parts of the re-
quirement specification. Firstly the requirements met will be showcased, followed
by those partially met, and finally those not met. More specifically the following
requirements are met:

• Determine if it is connected to Wi-Fi.
• Write Requests as described in Section 3.2.
• Read responses as described in Section 3.2.
• Facilitate a create user and login system.
• Must handle large files such as video.

The application is able to determine if it is connected to Wi-Fi, and all data-
intensive communication is done exclusively over Wi-Fi. Registering a user and
logging in is still possible via mobile data, but it is a few small HTTP requests. Both
the file data and download is done exclusively via Wi-Fi in order to conserve data.
The requests and responses are done using HTTP and work by these requests being
send to PHP-scripts on the caching server. These work, although improvements
such as requiring a user to be logged in before fetching files and file data. The user
is able to both create a user and login with said user. It is also checked if the user



5.5. App 73

is logged in, and if not they are automatically redirected to the login page. They
are also able to logout with the press of a button. Furthermore the login system
is successfully connected to the caching based server. Due to external access, the
application is able to save as much data as the phone has space. This means that
large files such as video can be saved.

However, a system to automatically clean up files and delete them, after the
user has passed the courses is needed. If this is not implemented in future devel-
opment, the Brazilian waster pickers phones will quickly fill up, with old courses.
With the met requirements concluded, the partially met will be examined:

These requirements are partially met:

• Facilitate course content.
• Download files from caching server.

The course facilitation is to an extend complete, meaning that the user is able
to find the courses within the MaterialFilePicker. However, it does not actually open
the file and only displays a debug message on the file the user selected. While
Android has a default syntax for opening files, attempts at making it work with
the MaterialFilePicker were unsuccessful. The user can open the files trough their
own Android file explorer, but this is a poor option. While the application is able
to download files from the caching server using the download manager, it is not
dynamic.

This means that in its current state, only one file is downloaded. What should
be done is that the file data taken from the caching server should determine the
files downloaded trough variables. This concludes the partially met requirements
and lastly the non-met requirements are examined.

These requirements are not met:

• Gather stats as described in Section 3.2.5.
• Be able to playback .mp4 and .mp3 files.
• Have a savings and loan calculator similar to the AIF finance application

described in Section 2.2.1.2.

As described in [16], Android does have a built in API for logging the data
needed, however development never reached that stage, and therefore it is not im-
plemented. Due to the issues with the MaterialFilePicker, video and audio within
the application is not working. Lastly the calculator is the lowest priority require-
ment, and since more important requirements have not been met, development of
the calculator has not been done.

Overall the Android application needs some back-end work in order to fit with
the requirements as layout in the requirements specification. In extension the front-
end was never considered as it is not within the scope of the project, but for a
formal implementation to the Brazilian waste pickers, it will need an update.



5.6. Partial conclusion 74

5.6 Partial conclusion

This section will summarize the conclusions of the different parts of the system,
and lead into the final conclusion of the project. In Section 5.2.3 it is concluded that
the Moodle scraper meets the established requirement. However, there are some of
the functions that can be improved so that the system supports all the formats that
Moodle does which allows course creators to have more freedom to create content
that fits the waste pickers.

Section 5.4.1 and Section 5.3.3 concludes that only some of the requirement are
met. The caching server have most of the crucial parts implemented, like the a
database for storing data and a way of communicating through HTTP. What needs
to be created new is the algorithm for calculating the amount of data which should
be send to the smartphone. A part of this is also to create as system that can analyze
the network in order to provide this information to the algorithm. However, some
of the working parts will also need an update, like the database, this will need to
be restructured as a part of the further development so that it can contain the data
in an organized way.

In Section 5.5.10 it is concluded that the application meets some of the require-
ment but not all of them. The application is able to authenticate users by sending
requests to the caching server and reading the responses. The application is also
able to determine if it is connected to a Wi-Fi and handle large files downloaded on
the this connection. This download function is not yet able to download files dy-
namically so this is a feature that needs to be developed fully. The application also
needs to be able to gather stats which is an important part of the caching algorithm
so this should be one of the first things to be developed moving on. A thing that is
done but is not a part of the requirements is to make the HTTP traffic encrypted.
All the data transferred between the smartphone and the server is encrypted using
SSL, so that all HTTP traffic is actually transferred using HTTPS and plain HTTP
traffic is redirected to HTTPS enforcing encryption.

As seen through this section most of the requirement are met with place for
improvements. In order to show specifically which requirements are met, they are
put inside a table.

5.6.1 Requirements met

This section will present a checkbox containing all the requirements established.
Each of the requirements is then assessed with a symbol, the requirements which
are completely implemented is assessed with a X, however this does not mean
that the implementations cannot be improved. The requirements which are only
partially implemented like the CRUD requirement will be presented with a •, and
the requirements which are not implemented at all is presented with a %. This
table can be seen on Table 5.5.



5.6. Partial conclusion 75

Moodle Scraper state

Find content on a Moodle server. X

Download files from Moodle. X

Save files in the format described in Section 3.1. X

Find Etags in a HTTP-response X

Compare Etags to local database. X

Caching server

Receive Requests. X

Write Responses. X

Access local files. X

Save stats from app. •

Perform CRUD on users, see Section 3.2.3 •

Determine the amount of data to be sent. %

Handle several users simultaneously. X

User password recovery. %

Display stats graphically. %

Smartphone application

Facilitate course content. •

Determine if it is connected to Wi-Fi. X

Write Requests as described in Section 3.2. X

Read responses as described in Section 3.2. X

Facilitate a create user and login system. X

Download files from caching server. •

Gather stats as described in Section 3.2.5. %

Must handle large files such as video. X

Be able to playback .mp4 and .mp3 files. %

Have a savings and loan calculator similar to the AIF finance
application described in Section 2.2.1.2. %

Table 5.5: List of requirement with a symbol presenting the state

Conclusion based on requirements From the table above in Section 5.6.1 it can
be concluded in text both how much was completed and which parts are missing.
Out of the 24 requirements 14 are completed which is is around 58% of the require-



5.6. Partial conclusion 76

ments completely fulfilled. Counting the partially concluded then 20 out of 24 are
at least partially completed being 83%.



6 Conclusion

In Chapter 1 the problem following the shift in the way Brazil handles their trash
was examined. It was found that by closing the dump sites a large group of peo-
ple, the waste pickers, were left with out a stable income. By conducting both
field research and desk research it was found that most these waste pickers had a
inadequate understanding of finances. Alongside students and a professor from
UnB, it was found that a potential way of helping these waste pickers was to create
an educational system, to help them get a basic education and help with financial
management. The desk research also confirmed that an educational system for
smartphones could be a valuable tool not just for the waste pickers, but also other
groups of people around, as the adoption rates is rising. This research all is rooted
in the wish to work with the SDGs, and through them working with a problem
that can change the lives of people.

However, it was found that a problem with creating a platform like this is that
the files that would be needed to provide adequate teaching materials would be
quite large. This lead to an examination of data plans in Brazil. It was found that
the waste pickers most likely do not have much of data on their cell plans, and
thereby usage of Wi-Fi is critical. From this research an initial concept model de-
scribing a potential implementation of this system in broad terms is developed. By
exploring the different technical aspects of this concept, a requirement specification
and a prove of concept implementation is made.

This implementation manages to be the first building block in a larger system.
Having successfully built and connected each subsystem within the system with
clear guidelines for future development for each subsystem. Consequently a first
implementation is not very far away from the project in the state as of writing,
as only a few obstacles remain. Overall this project can from an implementation
aspect can be considered a success, especially due to the clear future development
path given. Furthermore, going by the amount learned by the project members
and the evolving of their respective technical abilities, this project is considered a
complete success.

6.1 Future development

A big part of a successful project like this is the ability to scope to what is possi-
ble within the timeline available. As the development of this project progressed
it became clear that not everything was going to be ready. Simply some develop-

77



6.1. Future development 78

ment is still needed on the project. While this proof of concept is not ready for
deployment, it has potential to help countless people get a basic education as it is.
Due to this larger perspective and the potential seen, laying out a concise plan for
future development is important. In order to begin an implementation phase the
Android application must become able to read and download selected lines from
the MySQL filedata database. Furthermore the course facilitation needs to get to a
working state. Combine this with a rudimentary caching algorithm, an the system
would be able to be deployed in Brazil with the courses created by our coopera-
tion partners. Whenever this system is to be deployed within new applications, its
important that the courses are changed to work best with the locals. A basic math-
ematics course might not require much change, as it is pretty universal, however
a finance course might need some changes. This could be in a sense of informing
different types of loans and savings accounts available to the target group. The best
way of having these implementations done is by working together with local non
profits of universities to have the create the courses. That way it is ensured that it
fits with local standards. With just these final implementation improvements, this
project thereby has the potential to help a large amount of people all around the
world.



7 Reflection

The reflection is split into two sections: international and internal. The goal of this
reflection is to gain insight into how the collaboration functioned and lessons to
be taken away from the same. Firstly the international section will showcase the
standards for communication used and challenges faced. This will in turn allow for
reflection on the methodology effectiveness. Since both project members have been
part of a previous international project, a comparative section between reflection
is given. With this comparison a summary of the reflection for the international
collaboration is given. After the international collaboration is done a reflection of
the internal collaboration is commenced.

As before the focus will be on the methodology and a discussion of how well
it worked and what important lessons can be taken from it. A point wished to
be highlighted as it has been a focus throughout the project: time management
will be given a more in depth discussion. As a part of this, a discussion of the
collaboration with the project supervisors are given followed by a final summary
of the reflection.

7.1 International collaboration

Here the international collaboration will be reflected upon. Firstly, the different
international collaborators are originally listed in Section 1.5, but are re displayed
here for convenience sake:

Denmark
Name Field of study Semester

Daniel Britze Computer engineering 4th

Peter Lundgaard Techno anthropology 8th

Robert Nielsen Computer engineering 4th

Brazil
Name Field of study Semester

João Mello’s subjects Production engineering TBD

Matheus Halbe Production engineering 9th

Table 7.1: Table containing students participating in the project

79



7.1. International collaboration 80

Around two months into the project, we where informed that João Mello’s
subjects had been set to do other work, as a result they did not directly contribute
to this demarcation. With the roles and parties surmised. A reflection upon the
initial field research is commenced.

7.1.0.1 Methodology

The collaboration between the different partners was not based on deliverables,
but rather maintaining contact, keeping each other informed on progress on their
respective parts of the project. This communication was done over the Discord
platform. The reasons for using Discord are described in [38]. In order to keep
in contact, a weekly meeting set on Sunday at 8pm Danish time was set. As a
consequence of being set on a weekend, it was sometimes forgotten by some danish
project members.

However, as this was only a main project for the writers of this dissertation
(Daniel and Robert), a missed meeting was not a big issue. Furthermore a more
relaxed attitude was taken by all project members. This let to a good loose collab-
oration, however this might be due to the lower importance of the collaboration
in these early stages of the project. As both members of the group have previous
experience in an international collaboration, a quick comparison to the reflection
is given.

7.1.1 Compared with previous experience

We (Daniel and Robert), have experience doing international cooperation in a
somewhat similar project: P2 - HoneyJar [38]. In that project much of the time
was spent communicating with the other project members. Beyond that, a lot of
time was spent attempting to handling a project member, who was not doing her
part of the project. A valuable lesson learned back then was to quickly take actions
in order to not to spent times thinking on it.

In this project, the more relaxed attitude helped alleviate this issue, and ended
up resulting in more time being spent on the project as supposed to thinking about
the international collaboration. This also comes as a result of the collaboration not
being nearly as integral as compared with the HoneyJar project. Overall we are
quite pleased with how the international collaboration went, and think for similar
projects in the future, a similar approach could be useful.

However, if the project is more tightly integrated between the different parties
within the project, a focus on deliverables should probably be done. This concludes
the summary of the international collaboration, and the Internal collaboration will
be explored next.



7.2. Internal collaboration 81

7.2 Internal collaboration

While working with international partners helps the project, it does not make a
difference unless the internal collaboration works well. Therefore a reflection of
the internal collaboration will be given. Firstly discussing and reflecting upon the
methodology and time management used in the project. Then a reflection upon
the Supervisor collaboration is given.

7.2.0.1 Collaboration methodology

Internally the methodology used can gain insight into the process used while mak-
ing the system and this methodology will be reflected upon. This project has been
very different in a number of key ways as compared to previous projects. Firstly
the group size of two, instead of five plus. This has meant quite a few things for
the project and how it is done. Firstly since the project is limited to two people,
it is important to trust and believe in the other person, as they are responsible for
half the project. As a result the way the which work is done is quickly what could
be considered more "professional", in a sense that each project member is expected
to do something, and left to their own devices in doing so.

A vital ability for this project to get as far as it has, is the way in which we take
a big problem and try to find a fitting solution and break this solution down to
its components. By making the initial concept model, it become possible to take
these different components and do in depth research for each. This methodology
means that each component and its respective requirements are based on tangible
writing. It also allows each component to be considered as to if it sensible within
the project, if it is decided not to, then it becomes necessary for the group to
discuss alternatives. This means, that since the different parts worked on don’t
communicate with each other, then the chances of the different members code
coming in conflict with each other was very low.

Of course this also meant that collaboration might not have been as close as
it could have been, but this methodology used, did allow each project member
large degrees of freedom. It can best be summarized as "freedom under respon-
sibility", which was agreed by the members in the beginning. While some people
might find this intimidating, depending on personality types, the project members
found it very useful. Having discussed the collaboration methodology, the time
management will be examined next.

7.2.0.2 Time management

As time management is a critical aspect of the project, it is sensible to reflect
upon it. Time management in this project was somewhat different from previ-
ous projects. Since we where only two people, and had work stations right next



7.2. Internal collaboration 82

to each other, knowing what the other person was doing and their progress was
pretty simple. While a more strict plan was laid sometimes in the project, it was
quickly realized that some things take the time they do for the person doing it,
and remaining more flexible in the time management approach became impor-
tant. This also meant that the lack of an actual time management system, such
as Trello. Partially due to this needed flexibility and the project members being
able to quickly learn their co-workers progress, but also partially due to the time it
takes to maintain such a system. In hindsight it has quickly become apparent that
this solution is lacking, and that more detailed time management should be done.
Within the group an idea is made to always have the things people are working on,
in writing on a blackboard, where each person periodically updates the percentage
done. The period would have to be decided within the group.

Working as two in a group as meant time for a group member is more limited
compared to groups with five or more, as groups size usually are in this semester.
Of course, this does not mean no structure was used for time management. A focus
on the results of what the project member had done is the approach taken. Usually,
this will result into a supervisor meeting being set as the next "milestone" and the
things to do beforehand would be defined as the meeting was planned. This gave
each group member a tangible thing to work on within about a two week basis.

An additional challenge this semester to the time management, has been the
workshops from the courses, as they proved more difficult than previous semesters,
and therefore took quite a bit more time. Again this means that flexibility had to be
the keyword for all time management, and overall was successful this semester. In
addition as with all project, a supervisor is part of the project and the collaboration
with them is therefore reflected on.

7.2.0.3 Supervisor

Having now spent two years working with supervisors in the context of AAU, the
lessons learned from previous projects are definitely beginning to show. Firstly,
the supervisor is used to give periodic feedback on the project demarcation, which
helps create a better end result. In previous projects, we almost always concluded
that the supervisor needed to be used more for this. However in this project a
much better balance was struck. Resulting in supervisor meeting with the goal
of providing feedback to the demarcation, might be somewhat far apart, but only
"finished work" is shown to the supervisor allowing a model developed during
Daniels 1st semester to be used [23]:

The A-B-V-C model: Person A writes a section. Person B corrects a section and
looks for errors. The supervisor V gives feedback on the section during a supervi-
sor meeting. Lastly Person C (Person A or B in this case) corrects the errors found



7.3. Summary 83

by the supervisor or any new ones he finds himself. Then this part of the demar-
cation can be crossed off as finished unless new information leads to the section
needing changes.

Using this model has allowed for a very productive semester, where a demar-
cation of considerable size for two people has been created. Overall the supervi-
sor collaboration has been really successful, as feedback has been provided when
needed. Unlike some previous projects, few issues presented themselves during
the time spent on this project. Effectively meaning, the supervisor was not needed
to help with any issues be it internal collaboration or the international collabora-
tion.

7.3 Summary

In summary a more relaxed attitude in the international collaboration was taken.
Due to the different parts of the project not being very tightly bound, this proved
a good thing, as little time was spent on issues, allowing for more focused time
on working. The internal collaboration was quite successful based on the ability
to break down a solution into smaller bites and splitting them up between the
project members. Working with a "freedom under responsibility" mindset, helped
the productivity of both project members. The supervisor has played a good role
within the project providing feedback to the demarcation when asked. Finally the
reflection conclusion table is presented.

7.4 Reflection conclusion table

The reflection conclusion table presents lessons learned from this project within a
three structure system: Start doing, keep doing, stop doing. For each point in the
table, the lesson will be presented.



7.4. Reflection conclusion table 84

Start doing

More structured time planning.

Concrete and measurable deadlines.

Unified code structure.

Better internal communication.

Keep doing

Freedom under responsibility.

Weekly meetings.

Group contract.

Use the help from people around us.

Active information sharing.

Take notes during every supervisor meetings.

Choosing real world applications as a project

Shared calendar.

Stop doing

Waiting for collaboration partners.

Spending time on irrelevant activities.

Write Requests as described in Section 3.2.

Read responses as described in Section 3.2.

Facilitate a create user and login system.

Table 7.2: List of lessons learned during the project



Bibliography

[1] barteksc. Android PdfViewer. https://github.com/barteksc/AndroidPdfViewer.
[Visited 08-04-2019]. 2019.

[2] bbc.com. Huge Brazil rubbish dump closes after six decades. https://www.bbc.
com/news/world-latin-america-42757085. [Visited 26-03-2019]. 2018.

[3] Sagar Bhatia. PostgreSQL vs. MySQL: [2019] Everything You Need to Know.
https://hackr.io/blog/postgresql-vs-mysql. [Visited 15-05-2019]. 2019.

[4] Pew Research Center. Pew Research Center. https://www.pewresearch.org/.
[Visited 27-05-2019]. 2019.

[5] Rasmi Vlad Mahmoud Christian Hundborg Liboriussen Ivan Kjær Gam-
meljord. “Connecting South African Schools With Unreliable Internet”. In:
Unpublished (2018), p. 121.

[6] countryeconomy.com. Brazil National Minimum Wage - NMW. https://countryeconomy.
com/national-minimum-wage/brazil. [Visited 14-03-2019]. 2019.

[7] Open Trivia DB. Open Trivia DB. https://opentdb.com/. [Visited 05-04-2019].
2019.

[8] ASonia M. Dias. Statistics on Waste Pickers in Brazil. http://www.wiego.org/
publications / statistics - waste - pickers - brazil. [Visited 25-03-2019].
2011.

[9] Serviço de Limpeza Urbana do Distrito Federal. Serviço de Limpeza Urbana do
Distrito Federal. http://www.slu.df.gov.br/. [Visited 13-02-2019]. 2019.

[10] Coding in Flow. How to Play a Sound File Using the MediaPlayer Class - Android
Studio Tutorial. https://www.youtube.com/watch?v=C_Ka7cKwXW0. [Visited
20-05-2019]. 2018.

[11] Grupo Gestão. Grupo Gestão. https://www.grupogestaoconsultoria.com/.
[Visited 27-05-2019]. 2019.

[12] Google. AIF Financial Literacy - googe play store. http://tinyurl.com/y3djxloy.
[Visited 27-03-2019]. 2019.

[13] Google. ConnectivityManager. https://developer.android.com/training/
basics/network-ops/managing. [Visited 20-05-2019]. 2019.

[14] Google. DownloadManager. https://developer.android.com/reference/
android/app/DownloadManager. [Visited 23-05-2019]. 2019.

85

https://github.com/barteksc/AndroidPdfViewer
https://www.bbc.com/news/world-latin-america-42757085
https://www.bbc.com/news/world-latin-america-42757085
https://hackr.io/blog/postgresql-vs-mysql
https://www.pewresearch.org/
https://countryeconomy.com/national-minimum-wage/brazil
https://countryeconomy.com/national-minimum-wage/brazil
https://opentdb.com/
http://www.wiego.org/publications/statistics-waste-pickers-brazil
http://www.wiego.org/publications/statistics-waste-pickers-brazil
http://www.slu.df.gov.br/
https://www.youtube.com/watch?v=C_Ka7cKwXW0
https://www.grupogestaoconsultoria.com/
http://tinyurl.com/y3djxloy
https://developer.android.com/training/basics/network-ops/managing
https://developer.android.com/training/basics/network-ops/managing
https://developer.android.com/reference/android/app/DownloadManager
https://developer.android.com/reference/android/app/DownloadManager


Bibliography 86

[15] Google. finance education - googe play store. http://tinyurl.com/y3djxloy.
[Visited 27-03-2019]. 2019.

[16] Google. Log. https://developer.android.com/reference/android/util/
Log. [Visited 23-05-2019]. 2019.

[17] Google. math education - googe play store. http://tinyurl.com/y68rjfhl.
[Visited 27-03-2019]. 2019.

[18] google. MediaPlayer overview. https : / / developer . android . com / guide /
topics/media/mediaplayer.html. [Visited 08-04-2019]. 2019.

[19] Google. VideoView. https://developer.android.com/reference/android/
widget/VideoView. [Visited 20-05-2019]. 2019.

[20] Google. Volley Overview. https : / / developer . android . com / training /
volley. [Visited 20-05-2019]. 2019.

[21] GreenShoots. GreenShoots. https://www.greenshootsfoundation.org/. [Vis-
ited 13-02-2019]. 2019.

[22] miniwatts marketing group. Internet Users in the World. https://www.internetworldstats.
com/stats.htm. [Visited 14-03-2019]. 2019.

[23] Christopher Damsgaard. Daniel Britze. Kristian Noesgaard Nielsen. Jacob
Vejlin Jensen. Magnus Stensli. Mikkel Steen Hansen. AAU HoneyPot. https:
//projekter.aau.dk/projekter/da/studentthesis/aau-honeypot(4b016229-
e96e-46d2-b421-c2757946bcd0).html. [Visited 23-05-2019]. 2018.

[24] Daniel Britze. Johan Hempel Bengtson. Jacob Vejlin Jensen. Robert Neder-
gaard Nielsen. Mikkel Steen Hansen. Internet of Things - Smart Home: Smart
Home protocol design. https://projekter.aau.dk/projekter/da/studentthesis/
internet-of-things--smart-home(4bb4cdfc-02eb-44b7-9804-724327401dbb)
.html. [Visited 23-05-2019]. 2018.

[25] Women in Informal Employment: Globalizing and Oraganizing. Empower-
ing Informal Workers, Securing Informal Livelihoods. http://www.wiego.org/.
[Visited 25-03-2019]. 2019.

[26] Women in Informal Employment: Globalizing and Oraganizing. Waste Pick-
ers. http://www.wiego.org/blogs/term/25. [Visited 25-03-2019]. 2019.

[27] Anas Khan. package soup. https://godoc.org/github.com/anaskhan96/
soup. [Visited 28-05-2019]. 2019.

[28] Laura Silver Kyle Taylor. Smartphone Ownership Is Growing Rapidly Around the
World, but Not Always Equally. http://www.pewglobal.org/2019/02/05/
smartphone- ownership- is- growing- rapidly- around- the- world- but-
not-always-equally/. [Visited 13-03-2019]. 2019.

[29] Moodle. Working with files. https://docs.moodle.org/36/en/Working_
with_files. [Visited 12-04-2019]. 2019.

http://tinyurl.com/y3djxloy
https://developer.android.com/reference/android/util/Log
https://developer.android.com/reference/android/util/Log
http://tinyurl.com/y68rjfhl
https://developer.android.com/guide/topics/media/mediaplayer.html
https://developer.android.com/guide/topics/media/mediaplayer.html
https://developer.android.com/reference/android/widget/VideoView
https://developer.android.com/reference/android/widget/VideoView
https://developer.android.com/training/volley
https://developer.android.com/training/volley
https://www.greenshootsfoundation.org/
https://www.internetworldstats.com/stats.htm
https://www.internetworldstats.com/stats.htm
https://projekter.aau.dk/projekter/da/studentthesis/aau-honeypot(4b016229-e96e-46d2-b421-c2757946bcd0).html
https://projekter.aau.dk/projekter/da/studentthesis/aau-honeypot(4b016229-e96e-46d2-b421-c2757946bcd0).html
https://projekter.aau.dk/projekter/da/studentthesis/aau-honeypot(4b016229-e96e-46d2-b421-c2757946bcd0).html
https://projekter.aau.dk/projekter/da/studentthesis/internet-of-things--smart-home(4bb4cdfc-02eb-44b7-9804-724327401dbb).html
https://projekter.aau.dk/projekter/da/studentthesis/internet-of-things--smart-home(4bb4cdfc-02eb-44b7-9804-724327401dbb).html
https://projekter.aau.dk/projekter/da/studentthesis/internet-of-things--smart-home(4bb4cdfc-02eb-44b7-9804-724327401dbb).html
http://www.wiego.org/
http://www.wiego.org/blogs/term/25
https://godoc.org/github.com/anaskhan96/soup
https://godoc.org/github.com/anaskhan96/soup
http://www.pewglobal.org/2019/02/05/smartphone-ownership-is-growing-rapidly-around-the-world-but-not-always-equally/
http://www.pewglobal.org/2019/02/05/smartphone-ownership-is-growing-rapidly-around-the-world-but-not-always-equally/
http://www.pewglobal.org/2019/02/05/smartphone-ownership-is-growing-rapidly-around-the-world-but-not-always-equally/
https://docs.moodle.org/36/en/Working_with_files
https://docs.moodle.org/36/en/Working_with_files


Bibliography 87

[30] United Nations. 4 Quality Education. https://www.un.org/sustainabledevelopment/
education/. [Visited 13-03-2019]. 2019.

[31] United Nations. About the Sustainable Development Goals. https://www.un.
org/sustainabledevelopment/sustainable-development-goals/. [Visited
13-03-2019]. 2019.

[32] ngo.org. DEFINITION OF NGOs. http://www.ngo.org/ngoinfo/define.
html. [Visited 13-02-2019]. 2019.

[33] nperf. 2G / 3G / 4G coverage map, Brazil. https://www.nperf.com/en/map/
BR/-/161704.Vivo-Mobile/signal/?ll=-12.168225677390119&lg=-47.
06542968750001&zoom=5. [Visited 25-03-2019]. 2019.

[34] Jacob Poushter. Smartphone Ownership and Internet Usage Continues to Climb in
Emerging Economies. http://www.pewglobal.org/2016/02/22/smartphone-
ownership- and- internet- usage- continues- to- climb- in- emerging-
economies/. [Visited 13-03-2019]. 2019.

[35] Stastistica. Mobile telephony market share in Brazil from 2000 to 2016, by telecom-
munications provider. https : / / www . statista . com / statistics / 523798 /
mobile-market-share-in-brazil-by-operator/. [Visited 14-03-2019]. 2019.

[36] statcounter.com. Mobile Operating System Market Share Brazil. https://tinyurl.
com/y5gnatmx. [Visited 22-05-2019]. 2019.

[37] statista. Number of internet users worldwide from 2005 to 2018 (in millions).
https://www.statista.com/statistics/273018/number-of-internet-
users-worldwide/. [Visited 14-03-2019]. 2019.

[38] Peter Bolstad Møller. Daniel Britze. Jacob Vejlin Jensen. Robert Nedergaard
Nielsen. Magnus Stensli. EPIC HoneyJar. https : / / projekter . aau . dk /
projekter/da/studentthesis/epic-honeyjar(ab23958c-8a53-4847-9538-
623cb821616a).html. [Visited 23-05-2019]. 2018.

[39] nbsp team. aterialFilePicker. https://github.com/nbsp-team/MaterialFilePicker.
[Visited 23-05-2019]. 2019.

[40] tradingeconomics.com. Brazil Real Average Monthly Income. https://tradingeconomics.
com/brazil/wages. [Visited 14-03-2019]. 2019.

[41] VIVO. Conheça as Ofertas. https://celular.vivo.com.br/planos/pre/.
[Visited 14-03-2019]. 2019.

[42] VIVO. Vivo Pós. https://www.vivo.com.br/portalweb/appmanager/env/
web?_nfls=false&_nfpb=true&_pageLabel=P103400288691448313279159&
WT.ac=portal.movel.planosepacotes.planospos.smartvivopos_&. [Visited
14-03-2019]. 2019.

[43] Wikipedia. Moodle. https://en.wikipedia.org/wiki/Moodle. [Visited 04-
04-2019]. 2019.

https://www.un.org/sustainabledevelopment/education/
https://www.un.org/sustainabledevelopment/education/
https://www.un.org/sustainabledevelopment/sustainable-development-goals/
https://www.un.org/sustainabledevelopment/sustainable-development-goals/
http://www.ngo.org/ngoinfo/define.html
http://www.ngo.org/ngoinfo/define.html
https://www.nperf.com/en/map/BR/-/161704.Vivo-Mobile/signal/?ll=-12.168225677390119&lg=-47.06542968750001&zoom=5
https://www.nperf.com/en/map/BR/-/161704.Vivo-Mobile/signal/?ll=-12.168225677390119&lg=-47.06542968750001&zoom=5
https://www.nperf.com/en/map/BR/-/161704.Vivo-Mobile/signal/?ll=-12.168225677390119&lg=-47.06542968750001&zoom=5
http://www.pewglobal.org/2016/02/22/smartphone-ownership-and-internet-usage-continues-to-climb-in-emerging-economies/
http://www.pewglobal.org/2016/02/22/smartphone-ownership-and-internet-usage-continues-to-climb-in-emerging-economies/
http://www.pewglobal.org/2016/02/22/smartphone-ownership-and-internet-usage-continues-to-climb-in-emerging-economies/
https://www.statista.com/statistics/523798/mobile-market-share-in-brazil-by-operator/
https://www.statista.com/statistics/523798/mobile-market-share-in-brazil-by-operator/
https://tinyurl.com/y5gnatmx
https://tinyurl.com/y5gnatmx
https://www.statista.com/statistics/273018/number-of-internet-users-worldwide/
https://www.statista.com/statistics/273018/number-of-internet-users-worldwide/
https://projekter.aau.dk/projekter/da/studentthesis/epic-honeyjar(ab23958c-8a53-4847-9538-623cb821616a).html
https://projekter.aau.dk/projekter/da/studentthesis/epic-honeyjar(ab23958c-8a53-4847-9538-623cb821616a).html
https://projekter.aau.dk/projekter/da/studentthesis/epic-honeyjar(ab23958c-8a53-4847-9538-623cb821616a).html
https://github.com/nbsp-team/MaterialFilePicker
https://tradingeconomics.com/brazil/wages
https://tradingeconomics.com/brazil/wages
https://celular.vivo.com.br/planos/pre/
https://www.vivo.com.br/portalweb/appmanager/env/web?_nfls=false&_nfpb=true&_pageLabel=P103400288691448313279159&WT.ac=portal.movel.planosepacotes.planospos.smartvivopos_&
https://www.vivo.com.br/portalweb/appmanager/env/web?_nfls=false&_nfpb=true&_pageLabel=P103400288691448313279159&WT.ac=portal.movel.planosepacotes.planospos.smartvivopos_&
https://www.vivo.com.br/portalweb/appmanager/env/web?_nfls=false&_nfpb=true&_pageLabel=P103400288691448313279159&WT.ac=portal.movel.planosepacotes.planospos.smartvivopos_&
https://en.wikipedia.org/wiki/Moodle


Bibliography 88

[44] Petr Škoda. File API internals. https://docs.moodle.org/dev/File_API_
internals. [Visited 09-04-2019]. 2017.

https://docs.moodle.org/dev/File_API_internals
https://docs.moodle.org/dev/File_API_internals


Appendices

89



90



.1. Field research questions 91

.1 Field research questions

Research question Interview question Translation Portuguese

How are the workers financial
situation?

- Do you feel like you have
enough money to last the rest
of the week/Month?

- Voce sente que voce tem din-
heiro o suficiente para o resto
da semana?

- Do you know how much
money you are making every
week/month?

- Voce sabe quanto dinheiro
voce faz por semana?

- Do you know how much
you pay in tax?

- Voce sabe o quanto voce
paga em impostos?

- Do you have a retirement
plan?

- Voce tem algum plano para
sua aposentadoria?

How well do the workers fare
with mathematics?

- Have you ever been to
school?

- Voce frequentou a escola atë
qual serie?

- How well would you say
you understand mathemat-
ics?

- O quao bem voce entende
matematica?

- Do you feel like your level of
understanding of mathemat-
ics creates problems in your
everyday life?

- Voce acha que voce perde
alguma coisa por nao saber
matematica?

Does the workers experience
problems in their daily in re-
gards to finance?

- Have ever experienced not
having enough money for ba-
sic necessities?

- Alguma vez faltou dinheiro
para suas necessidades basi-
cas?

- What do you feel about your
financial situation? Are you
happy or do you feel like it is
a problem?

- Como esta sua situacao fi-
nanceira? Voce esta feliz ou
acha que ë um problema?

How do the workers feel
about education and learn-
ing?

- Are you interested in learn-
ing?

- Voce se interessa por apren-
der?

- How do feel about the edu-
cation you have already had?

- O que voce acha da educa-
cao que voce ja teve?

- Do you feel like you have
gained new knowledge from
those classes?

- Voce considera que voce
ganhou novos conhecimentos
dessas aulas?

- How have the classes im-
pacted your life?

- Como as aulas impactaram
suas vidas?

- Do you want to partici-
pate in an educational course
about basic mathematics and
financial management?

- Voce teria interesse em
participar de um curso de
matematica e educacao finan-
ceira?

- What are your thoughts
about education in general?

- O que voce acha da escola e
da educacao em geral?

What problems do the work-
ers see as the biggest in their
lives?

- What do you feel is the
biggest problem in your life
right now?

- Qual e o principal problema
da sua vida agora?



.2. Field research interview 92

.2 Field research interview

Translation of the “interview” with the waste pickers during the tour through the
dump site area (01/30/19).

Transcribed and translated by Mateus Halbe, see Section 1.5.

Mateus Halbe:So, let’s start. We see things are better than before.

Waste picker:No, things are not better than before.

Mateus Halbe:Why?

Waste picker:Because before we had money.

Mateus Halbe:Are you making less money today?

Manager of administration:What is improved today in infrastructure, or space to
work. The point of before they gained more is that before they worked in-
dividually then it was a war for the garbage, because the one that reached
first would have property of garbage. Now at the Triage Center everyone
works and the whole amount of revenue is divided. And who works more
compared to other people ends up feeling hurt. So they think here is not
better. He works a lot here and works a little and receives less here.

Mateus Halbe:How much do you get here?

Waste picker:With the benefit payed for the participation in the classes, R$ 1000.
R$360 from the participation in the course.

Mateus Halbe:What do they teach in the course for you?

Waste picker:Now Work safety practices, management, how to operate the ma-
chines. A more technical learning. It’s once a week. We have learned about
the cooperative’s financial management, where we apply our money.

Mateus Halbe:Your financial situation could be better right? but the thing is evolv-
ing right?

Waste picker:Yes it is evolving.

Mateus Halbe:How do you consider your math knowledge? and you suffer some
kind of limitation in your everyday life because of some lack of math knowl-
edge?

Waste picker:I do not know how to make head or paper calculations. But I do
everything in the calculator just fine.



.2. Field research interview 93

Mateus Halbe:What is your schooling?

Waste picker:I finished high school and now I wanted to do social service college.
But due to the conditions of money, schedules and everything ends up not
being possible. But here the minority has second degree (high school).

Mateus Halbe:And here there are a lot of people who can not read or write, right?

Waste picker:Yes. We have a program in progress that made two people who did
not write, and would not be able to write their names, to now be able to write
at least their names.

Mateus Halbe:Excellent

Waste picker:They separate people into groups depending on the level of educa-
tion they have given these reading and writing classes to who needs it there
in IFB. The rest do the other courses, from Senai, for example. We have here
five people who do not write in any way. Not even their name.

Mateus Halbe:And you, Maria? as...

Maria:No! I have nothing to say! You don’t need to talk to me.

Mateus Halbe:No. Just a little question here, Maria. Come on! I just want to ask
you this: did you study until which school level?

Maria:The only thing I know is to sign my name. Nothing else.

Mateus Halbe:Interesting. And do you read something?

Maria:No.

Mateus Halbe:Not yet, right, Maria?

Maria:Yes. Not yet.

Mateus Halbe:Because you’ll be able to read soon, right, Maria?

Maria:Ah! study is not with me! I don’t think so.

Mateus Halbe:But then Maria, as you write your name, you are not in the group
of five that are considered as unfit to read and write, right?

Maria:Yes. I am not on that group. I sign my name.

Mateus Halbe:(Min11) and here how does division of functions work?



.2. Field research interview 94

Maria:We decide who are in the directors team of the cooperative, but even the
administrators and directors do the screening. Everyone here does sorting.
everybody here selects garbage.

Mateus Halbe:Maria, Do you have a cell phone and use WhatsApp?

Maria:Yes

Mateus Halbe:Is your cell phone with you right now?

Maria:Yes

Mateus Halbe:Can I take a look at your cell phone?

Maria:(Laughs)

Mateus Halbe:Calm down, there’s a camera here and everything. I will not steal
your cell phone.

Maria:(Maria shows her cell phone)

Mateus Halbe:Cool. It’s a Samsung that holds two chips. It’s a good cell phone.
You can solve your things, right? and even if you do not have the ability to
read you can use the cell phone and solve your things?

Maria:Yes

Mateus Halbe:Maria, how do you talk in the WhatsApp? you just listen to audio,
is this?

Maria:Yes. I listen to audio and record the audio.

Mateus Halbe:Another question, Maria. Have you experienced financial difficul-
ties before or now that made you unable to meet your basic needs?

Maria:Now it’s difficult but it’s possible to survive well. Another thing is my past.
if I talk about my past it will be very crying here. I can not tell my story here.
I certainly had this situation. I was raised without a father..., anyway. But
now the children have grown and everything; grown well; and now I have
some support from them.

Waste picker:Most people here have already been through this extremely difficult
financial situation, and some are still through. There are months here that
we need to help each other, otherwise it is very difficult.

Maria:I’m old enough to retire and I can not retire. Things are too difficult these
days.



.2. Field research interview 95

Mateus Halbe:It’s one day after another, right? And nowadays if you were to select
Which is the biggest problem you face today? in general, that problem that
hinders his life.

Waste picker:It is so much. So many things. I think family is the most important,
if family is well Everything is fine. Now at this point I feel like I have a big
problem with that. The love of many today It’s gone cold. For me today my
biggest problem is my family.

Maria:It has a whole range of problems, today the growing child already wants
to get involved with drugs. So this is a very big problem, but I thank God
I created my five children and my children are a blessing. Everyone works,
everyone has their service ... for me, what hurts me most today is that I could
not retire. I’ve worked too much! in the field doing heavy duty since the 8
years old. I grew up like this and married, I can not even calculate how much
time I worked.

Mateus Halbe:So, to ask another question. What is the verdict, do you prefer to
work here or in the dump?

Waste picker:Dumping ground.

Waste picker:Dumping ground.

Waste picker:Dump site with certainty.

Maria:Here everyone is for the dump site

Mateus Halbe:Is this serious or are you all joking?

Waste picker:Seriously! There, I worked three days and I already supported the
entire month

Maria:I particularly prefer here

Mateus Halbe:So if the Dumpsite went back to operation, would you go back
there?

Waste picker:I have five children to support

Manager of administration:We have to think about the benefits highlighted today.
All Social Security contributions from you today are paid. I do not know if
this will work for all of you, But you are all up to date on these payments in
Welfare. no one had it there. Here he earns little, because it is not like there
that we were just going to get the garbage and leave. Here you have a whole
structure to keep. Here we have a thousand of things to pay.



.3. Moodle scraper 96

Waste picker:But if we worked there right now and still had to pay all that, we
would still earn more money. There we had more money. The material there
was totally different from what has come to here and I used my salary to
pay the social security fees and even then I had left over. Here everyone only
takes $ 150.

Mateus Halbe:$ 150 per week?

Waste picker:No. R $ 150 per fortnight. R $300 per month; and R $350 when it
gives too much.

Waste picker:And there is the benefit of compulsory classes that is R $360. It is
not enough. R$700 for the whole month when we have a very good and
productive month.

Mateus Halbe:Yes, indeed! It makes sense, I got the perception from everyone, but
what the management waste picker said, it’s also relevant; when you pay the
Pension Plan correctly you are investing in the future, and this was not done
before when you were in the dump site. It’s complicated. It’s hard to choose,
I know.

Waste picker:Yes. But I can not keep thinking about my future. Because it is
already difficult to eat today.

Manager of administration:Here the advantage is that we work in the shade, with
a dining room, bathroom to shower and a whole structure. It’s dignity. We
think about how many people died working in the open dump pressed by
trucks or with sickness.... Here we have dignity.

Waste picker:For my dignity it’s money

Mateus Halbe:(Asks everybody to show their phones and check their capacities.
The phones are good. And says goodbye to the waste pickers and go away.)

.3 Moodle scraper

.3.1 Moodle scraper - main

1 package main
2

3 import (
4 " io/ i o u t i l "
5 " log "
6 " net/http "
7 " net/http/ c o o k i e j a r "



.3. Moodle scraper 97

8 " net/u r l "
9 courses " t e s t 2 /courses "

10 files " t e s t 2 / f i l e s "
11 )
12

13 const (
14 baseUrl = " http :// frudio . l a n e s t o l e n . dk :8080/ "
15 )
16

17 var (
18 username = " admin "
19 password = " Smart−caching−2019 "
20 Database = " database . j son "
21 outputDir = " output "
22 )
23

24 type App s t r u c t {
25 Client * http . Client
26 }
27

28 func ( app *App ) login ( ) {
29 client := app . Client
30 loginURL := " ht tp :// frudio . l a n e s t o l e n . dk :8080/ log in/index . php"
31

32 data := url . Values {
33 " username " : { username } ,
34 " password " : { password } ,
35 }
36 resp , err := client . PostForm ( loginURL , data )
37 i f err != n i l {
38 log . Fatalln ( err )
39 }
40 defer resp . Body . Close ( )
41 _ , err = ioutil . ReadAll ( resp . Body )
42 i f err != n i l {
43 log . Fatalln ( err )
44 }
45 }
46 func main ( ) {
47 jar , _ := cookiejar . New ( n i l )
48 app := App {
49 Client : &http . Client { Jar : jar } ,
50 }
51 files . InitDatabase ( Database )
52 app . login ( )
53 files . MakeDir ( " output " )
54 courses . FindCourses ( baseUrl , app . Client )
55 courses . MakeCourseDirs ( " output " )
56 courses . DownloadContent ( outputDir , Database , app . Client )
57 courses . SaveDatabase ( )
58 courses . DoTheDBThing ( )
59

60 files . SaveDatabase ( Database )
61 }

Code-block 1: Main go



.3. Moodle scraper 98

.3.2 Moodle scraper - files

1 package files
2

3 import (
4 " bytes "
5 " encoding/json "
6 " io "
7 " io/ i o u t i l "
8 " log "
9 " net/http "

10 " os "
11 " regexp "
12 " s t r i n g s "
13 " sync "
14

15 " github . com/anaskhan96/soup "
16 )
17

18 var (
19 DB = Files { }
20 )
21

22 type Files s t r u c t {
23 Files [ ] File ` j son : " f i l e s " `
24 }
25

26 type File s t r u c t {
27 Href s t r i n g ` j son : " hre f " `
28 Etag s t r i n g ` j son : " etag " `
29 }
30

31 func MakeDir ( path s t r i n g ) {
32 os . Mkdir ( path , 0777)
33 }
34

35 func fileWrite ( filePath s t r i n g , text [ ] byte ) {
36 file , err := os . Create ( filePath )
37 i f err != n i l {
38 log . Fatal ( err )
39 }
40 file . Write ( text )
41 i f err != n i l {
42 log . Fatal ( err )
43 }
44 }
45

46 func InitDatabase ( Database s t r i n g ) {
47 startValue := [ ] byte ( " {\" f i l e s \ " : [ ] } " )
48 i f _ , err := os . Stat ( Database ) ; err != n i l {
49 i f os . IsNotExist ( err ) {
50 fileWrite ( Database , startValue )
51 } e l s e {
52 // other e r r o r
53 }
54 }
55 }



.3. Moodle scraper 99

56 func SaveDatabase ( Database s t r i n g ) {
57 db , err := json . Marshal ( DB )
58 i f err != n i l {
59 log . Fatal ( err )
60 }
61 ioutil . WriteFile ( Database , db , 0777)
62 }
63 func FindFile ( href , etag s t r i n g , Database s t r i n g ) s t r i n g {
64 data , err := os . Open ( Database )
65 i f err != n i l {
66 log . Fatal ( err )
67 }
68 defer data . Close ( )
69 byteValue , _ := ioutil . ReadAll ( data )
70 _ = json . Unmarshal ( [ ] byte ( byteValue ) , &DB )
71 f o r i := 0 ; i < len ( DB . Files ) ; i++ {
72 i f href == DB . Files [ i ] . Href && etag == DB . Files [ i ] . Etag {
73 re turn " F i l e i s concurent "
74 }
75 }
76 re turn " F i l e i s outdated or doesn ' t e x i s t "
77 }
78

79 func getFile ( url s t r i n g , client * http . Client ) * http . Response {
80 tempfile := " f i l e . tmp"
81 log . P r i n t l n ( " Gett ing f i l e s with u r l − " , url )
82 resp , err := client . Get ( url )
83 i f err != n i l {
84 log . Fatal ( err )
85 }
86 defer resp . Body . Close ( )
87 file , err := os . Create ( tempfile )
88 i f err != n i l {
89 log . Fatal ( err )
90 }
91 defer file . Close ( )
92 io . Copy ( file , resp . Body )
93 re turn resp
94 }
95 func GetFile ( href , folder , Database s t r i n g , client * http . Client , wg * sync .←↩

WaitGroup ) s t r i n g {
96 r := getFile ( href , client )
97 var etag s t r i n g
98 f o r k , v := range r . Header {
99 i f k == " Etag " {

100 etag = strings . Join (v , " " )
101 log . P r i n t l n ( etag )
102 }
103 }
104 i f FindFile ( href , etag , Database ) == " F i l e i s concurent " {
105 log . P r i n t l n ( " F i l e i s concurent " )
106 wg . Done ( )
107 re turn " F i l e i s concurent "
108

109 } e l s e {
110 DB . Files = append ( DB . Files , File {
111 Href : href ,
112 Etag : etag ,
113 } )



.3. Moodle scraper 100

114 }
115 d := r . Header [ " Content−Di spo s i t ion " ]
116 re := regexp . MustCompile ( ` f i lename =\"(?P<Name>.+) \" ` )
117 filename := re . FindStringSubmatch ( strings . Join (d , " " ) ) [ 1 ]
118 os . Rename ( " f i l e . tmp" , folder+"/"+filename )
119 SaveDatabase ( Database )
120 wg . Done ( )
121 re turn filename
122 }
123 func GetPage ( href , folder , Database s t r i n g , client * http . Client , wg * sync .←↩

WaitGroup ) s t r i n g {
124 r , err := soup . GetWithClient ( href , client )
125 i f err != n i l {
126 log . Fatal ( err )
127 }
128 parsed := soup . HTMLParse ( r )
129 name := parsed . Find ( " h2 " ) . FullText ( )
130 re := regexp . MustCompile ( ` .+ ` )
131 small := re . ReplaceAllFunc ( [ ] byte ( name ) , bytes . ToLower )
132 re2 := regexp . MustCompile ( ` ( [A−Za−z ] + ) \s (\d+) ` )
133 nopunc := re2 . ReplaceAll ( small , [ ] byte ( " $1−$2 " ) )
134 clean := s t r i n g ( nopunc ) + " . t x t "
135 text := parsed . Find ( " div " , " c l a s s " , " t ex t_ to_html " ) . FullText ( )
136 fileWrite ( folder+"/"+clean , [ ] byte ( text ) )
137 wg . Done ( )
138 re turn clean
139 }

Code-block 2: Files main

.3.3 Moodle scraper - courses

1 package courses
2

3 import (
4 " database/ s q l "
5 " encoding/json "
6 " fmt "
7 " io/ i o u t i l "
8 " log "
9 " net/http "

10 " regexp "
11 " s t r i n g s "
12 " sync "
13 " t e s t 2 / f i l e s "
14

15 " github . com/anaskhan96/soup "
16 //dr iver f o r mysql
17 _ " github . com/go−sql−dr iver/mysql "
18 )
19

20 const (
21 host = " l o c a l h o s t " //Address f o r the mysql database
22 port = 3306 //Port f o r communicating with mysql
23 user = " admin " //Mysql user



.3. Moodle scraper 101

24 password = " Smartcaching−2019 " //Password f o r mysql
25 dbname = " android " //Name of the database
26 )
27

28 var (
29 courses = Courses { } // i n s t a n c e of courses
30 wg sync . WaitGroup //WaitGroup f o r syncronizing mult i threading
31 )
32

33 //Courses conta ins an arry of courses
34 type Courses s t r u c t {
35 Courses [ ] Course ` j son : " courses " `
36 }
37

38 //Course conta ins the name , l i n k and t o p i c s of each course on moodle
39 type Course s t r u c t {
40 Name s t r i n g ` j son : " name" `
41 Href s t r i n g ` j son : " hre f " `
42 Topics [ ] Topic ` j son : " t o p i c s " `
43 }
44

45 //Topic conta ins the name and the Contents of a t o p i c within a course
46 type Topic s t r u c t {
47 Name s t r i n g ` j son : " t o p i c " `
48 Content [ ] Resource ` j son : " resource " `
49 }
50

51 //Resource i s a d e s c r i p t i o n of each f i l e
52 type Resource s t r u c t {
53 Modtype s t r i n g ` j son : " type " `
54 Href s t r i n g ` j son : " hre f " `
55 Name s t r i n g ` j son : " name" `
56 }
57

58 //findCourse checks whether a course already e x i s t s in Courses
59 func findCourse ( name s t r i n g ) bool {
60 f o r i := 0 ; i < len ( courses . Courses ) ; i++ {
61 i f name == courses . Courses [ i ] . Name {
62 re turn true
63 }
64 }
65 re turn f a l s e
66 }
67

68 //FindCourses f ind the a v a i l a b l e courses and adds then to courses and c a l l s ←↩
f indTopics

69 func FindCourses ( baseURL s t r i n g , client * http . Client ) {
70 resp , err := soup . GetWithClient ( baseURL , client )
71 i f err != n i l {
72 log . Fatalln ( err )
73 }
74 parsed := soup . HTMLParse ( resp )
75 courselinks := parsed . FindAll ( " h4 " )
76 f o r i := range courselinks {
77 links := courselinks [ i ] . Find ( " a " )
78 link := links . Attrs ( ) [ " hre f " ]
79 name := sanitizeCourseName ( links . Text ( ) )
80 i f findCourse ( name ) == true {
81



.3. Moodle scraper 102

82 } e l s e {
83 courses . Courses = append ( courses . Courses , Course {
84 Href : link ,
85 Name : name ,
86 } )
87 }
88

89 }
90 findTopics ( client )
91 }
92

93 //MakeCourseDirs c r e a t e s a f o l d e r f o r each course and subfo lders f o r each t o p i c
94 func MakeCourseDirs ( outputDir s t r i n g ) {
95 f o r i , c := range courses . Courses {
96 courseDir := outputDir + "/" + c . Name
97 files . MakeDir ( courseDir )
98 f o r _ , t := range courses . Courses [ i ] . Topics {
99 topicDir := courseDir + "/" + t . Name

100 files . MakeDir ( topicDir )
101 }
102 }
103 }
104

105 //f indTopics f i n d s t o p i c s within each course and the Contents and adds i t to the ←↩
courses i n s t a n c e of Courses

106 func findTopics ( client * http . Client ) {
107 f o r j := range courses . Courses {
108 resp , err := soup . GetWithClient ( courses . Courses [ j ] . Href , client )
109 i f err != n i l {
110 log . Fatalln ( err )
111 }
112 parsed := soup . HTMLParse ( resp )
113 list := parsed . FindAll ( " l i " , " c l a s s " , " main " )
114 f o r i := range list {
115 topic := list [ i ] . Find ( " span " , " c l a s s " , " sectionname " ) . Text ( )
116 clean := sanitizeTopicName ( topic )
117 courses . Courses [ j ] . Topics = append ( courses . Courses [ j ] . Topics , Topic {←↩

Name : clean } )
118 Content := list [ i ] . FindAll ( " div " , " c l a s s " , " content " )
119 f o r k := range Content {
120 file := Content [ k ] . FindAll ( " l i " , " c l a s s " , " resource " )
121 f o r f := range file {
122 resource := file [ f ] . FindAll ( " a " )
123 f o r l := range resource {
124 link := resource [ l ] . Attrs ( ) [ " hre f " ]
125 r , _ := client . Get ( link )
126 d := r . Header [ " Content−Di spo s i t ion " ]
127 re := regexp . MustCompile ( ` f i lename =\"(?P<Name>.+) \" ` )
128 filename := re . FindStringSubmatch ( strings . Join (d , " " ) ) [ 1 ]
129 courses . Courses [ j ] . Topics [ i ] . Content = append ( courses .←↩

Courses [ j ] . Topics [ i ] . Content , Resource { Href : link , ←↩
Modtype : " resource " , Name : filename } )

130 }
131 }
132 page := Content [ k ] . FindAll ( " l i " , " c l a s s " , " page " )
133 f o r f := range page {
134 resource := page [ f ] . FindAll ( " a " )
135 f o r l := range resource {
136 link := resource [ l ] . Attrs ( ) [ " hre f " ]



.3. Moodle scraper 103

137 name := resource [ l ] . Find ( " span " , " c l a s s " , " instancename " )←↩
. Text ( )

138 filename := sanitizeTopicName ( name ) + " . t x t "
139 courses . Courses [ j ] . Topics [ i ] . Content = append ( courses .←↩

Courses [ j ] . Topics [ i ] . Content , Resource { Href : link , ←↩
Modtype : " page " , Name : filename } )

140 }
141 }
142

143 }
144 }
145 }
146 }
147

148 //DownloadContent downloads each f i l e within the courses s t a r t i n g a new thread ←↩
f o r each f i l e

149 func DownloadContent ( outputDir , Database s t r i n g , client * http . Client ) {
150 f o r i , c := range courses . Courses {
151 f o r j , t := range courses . Courses [ i ] . Topics {
152 f o r _ , k := range courses . Courses [ i ] . Topics [ j ] . Content {
153 i f k . Modtype == " resource " {
154 wg . Add ( 1 )
155 go files . GetFile ( k . Href , outputDir+"/"+c . Name+"/"+t . Name , ←↩

Database , client , &wg )
156 } e l s e i f k . Modtype == " page " {
157 wg . Add ( 1 )
158 go files . GetPage ( k . Href , outputDir+"/"+c . Name+"/"+t . Name , ←↩

Database , client , &wg )
159

160 }
161 }
162 wg . Wait ( )
163 }
164 }
165

166 }
167

168 // DoTheDBThing i s the funct ion t h a t adds a l l the f i l e s to a mysql database f o r ←↩
the Smartphone app

169 func DoTheDBThing ( ) {
170 data := fmt . Sprintf ( "%s :%s@tcp(%s :%d )/%s " ,
171 user , password , host , port , dbname )
172 db , err := sql . Open ( " mysql " , data )
173 i f err != n i l {
174 log . Fatal ( err )
175 }
176 defer db . Close ( )
177 f o r i , c := range courses . Courses {
178 f o r j , t := range courses . Courses [ i ] . Topics {
179 f o r _ , k := range courses . Courses [ i ] . Topics [ j ] . Content {
180 sqlStatement := fmt . Sprintf ( " INSERT INTO ` F i l e s ` ( course , topic , ←↩

f i lename ) VALUES ( '% s ' , '% s ' , '% s ' ) ; " , c . Name , t . Name , k . Name )
181 fmt . P r i n t l n ( sqlStatement )
182 fmt . P r i n t l n ( k )
183 err = db . QueryRow ( sqlStatement ) . Scan ( )
184 i f err != n i l {
185 log . P r i n t l n ( err )
186 }
187 }



.4. PHP-scripts 104

188 }
189 }
190 }
191 func SaveDatabase ( ) {
192 db , err := json . Marshal ( courses )
193 i f err != n i l {
194 log . Fatal ( err )
195 }
196 ioutil . WriteFile ( " t e s t . j son " , db , 0777)
197 }

Code-block 3: Course main

1 package courses
2

3 import (
4 " bytes "
5 " regexp "
6 )
7

8 func sanitizeCourseName ( input s t r i n g ) s t r i n g {
9 re := regexp . MustCompile ( ` ( [A−Za−z ] + ) \s ( [A−Za−z ] + ) .\ s ( [A−Za−z ] + ) ` )

10 small := re . ReplaceAllFunc ( [ ] byte ( input ) , bytes . ToLower )
11 nopunc := re . ReplaceAll ( small , [ ] byte ( " $1−$2−$3 " ) )
12 clean := s t r i n g ( nopunc )
13 re turn clean
14 }
15 func sanitizeTopicName ( input s t r i n g ) s t r i n g {
16 re := regexp . MustCompile ( ` .+ ` )
17 small := re . ReplaceAllFunc ( [ ] byte ( input ) , bytes . ToLower )
18 re2 := regexp . MustCompile ( ` ( [A−Za−z ] + ) \s (\d+) ` )
19 nopunc := re2 . ReplaceAll ( small , [ ] byte ( " $1−$2 " ) )
20 clean := s t r i n g ( nopunc )
21 re turn clean
22 }

Code-block 4: Course sanitizer

.4 PHP-scripts

.4.1 Register user

1 <?php
2

3 require_once ' . . / inc ludes/DbOperations . php ' ;
4 $response = array ( ) ;
5

6 i f ( $_SERVER [ 'REQUEST_METHOD ' ] == 'POST ' ) {
7 i f (
8 i s s e t ( $_POST [ ' username ' ] ) and
9 i s s e t ( $_POST [ ' email ' ] ) and

10 i s s e t ( $_POST [ ' password ' ] ) and



.4. PHP-scripts 105

11 i s s e t ( $_POST [ ' phone ' ] ) ) {
12 //Data operat ion becomes p o s s i b l e
13

14 $db = new DbOperations ( ) ;
15

16 $result = $db−>createUser ( $_POST [ ' username ' ] ,
17 $_POST [ ' password ' ] ,
18 $_POST [ ' email ' ] ,
19 $_POST [ ' phone ' ]
20 ) ;
21 i f ( $result == 1) {
22 $response [ ' e r r o r ' ] = f a l s e ;
23 $response [ ' message ' ] = " User r e g i s t e r e d s u c c e s s f u l l y " ;
24

25 } e l s e i f ( $result == 0) {
26 $response [ ' e r r o r ' ] = t rue ;
27 $response [ ' message ' ] = " User already e x i s t s , p lease choose a ←↩

d i f f e r e n t email and username " ;
28

29 } e l s e i f ( $result == 2) {
30 $response [ ' e r r o r ' ] = t rue ;
31 $response [ ' message ' ] = "An e r r o r occurred , Please t r y again " ;
32 }
33

34 } e l s e {
35 $response [ ' e r r o r ' ] = t rue ;
36 $response [ ' message ' ] = " Required f i e l d s are missing " ;
37 }
38

39 } e l s e {
40 $response [ ' e r r o r ' ] = t rue ;
41 $response [ ' message ' ] = " I n v a l i d Request " ;
42 }
43

44 echo json_encode ( $response ) ;

Code-block 5: Register user

.4.2 User login

1 <?php
2 require_once ' . . / inc ludes/DbOperations . php ' ;
3

4 $response = array ( ) ;
5

6 i f ( $_SERVER [ 'REQUEST_METHOD ' ] == 'POST ' ) {
7

8 i f ( i s s e t ( $_POST [ ' username ' ] ) and i s s e t ( $_POST [ ' password ' ] ) ) {
9 $db = new DbOperations ( ) ;

10

11 i f ( $db−>userLogin ( $_POST [ ' username ' ] , $_POST [ ' password ' ] ) ) {
12 $user = $db−>getUserByUsername ( $_POST [ ' username ' ] ) ;
13 $response [ ' e r r o r ' ] = f a l s e ;
14 $response [ ' id ' ] = $user [ ' id ' ] ;
15 $response [ ' username ' ] = $user [ ' username ' ] ;



.4. PHP-scripts 106

16 $response [ ' email ' ] = $user [ ' email ' ] ;
17 $response [ ' phone ' ] = $user [ ' phone ' ] ;
18 $response [ ' message ' ] = " Logged in s u c c e s s f u l l y " ;
19 } e l s e {
20 $response [ ' e r r o r ' ] = t rue ;
21 $response [ ' message ' ] = " I n v a l i d username or password " ;
22 }
23

24 } e l s e {
25 $response [ ' e r r o r ' ] = t rue ;
26 $response [ ' message ' ] = " Required f i e l d s are missing " ;
27 }
28 }
29

30 echo json_encode ( $response ) ;
31 ?>

Code-block 6: User login

.4.3 DbOperations

1 <?php
2

3 class DbOperations
4 {
5

6 private $con ;
7

8 function __construct ( )
9 {

10

11 require_once dirname ( __FILE__ ) . ' /DbConnect . php ' ;
12

13 $db = new DbConnect ( ) ;
14

15 $this−>con = $db−>connect ( ) ;
16 }
17

18 /*CRUD −> C −> Create */
19

20 public function createUser ( $username , $pass , $email , $phone )
21 {
22 i f ( $this−>isUserExist ( $username , $email ) ) {
23 return 0 ;
24 } e l s e {
25 $password = sha1 ( $pass ) ;
26 $stmt = $this−>con−>prepare ( " INSERT INTO ` users ` ( ` id ` , ` username ` , `←↩

password ` , ` email ` , `phone ` ) VALUES (NULL, ? , ? , ? , ? ) ; " ) ;
27 $stmt−>bind_param ( ' s s s i ' , $username , $password , $email , $phone ) ;
28

29 i f ( $stmt−>execute ( ) ) {
30 return 1 ;
31 } e l s e {
32 return 2 ;
33 }



.4. PHP-scripts 107

34 }
35 }
36

37 public function userLogin ( $username , $pass ) {
38 $password = sha1 ( $pass ) ;
39 $stmt = $this−>con−>prepare ( "SELECT id FROM users WHERE username = ? AND ←↩

password = ? " ) ;
40 $stmt−>bind_param ( " ss " , $username , $password ) ;
41 $stmt−>execute ( ) ;
42 $stmt−>store_result ( ) ;
43 return $stmt−>num_rows >0;
44 }
45

46 public function getUserByUsername ( $username ) {
47 $stmt = $this−>con−>prepare ( "SELECT * FROM users WHERE username = ? " ) ;
48 $stmt−>bind_param ( " s " , $username ) ;
49 $stmt−>execute ( ) ;
50 return $stmt−>get_result ( )−>fetch_assoc ( ) ;
51 }
52

53

54

55 private function isUserExist ( $username , $email ) {
56 $stmt = $this−>con−>prepare ( "SELECT id FROM users WHERE username = ? OR ←↩

email = ? " ) ;
57 $stmt−>bind_param ( " ss " , $username , $email ) ;
58 $stmt−>execute ( ) ;
59 $stmt−>store_result ( ) ;
60 return $stmt−>num_rows > 0 ;
61 }
62 //Test f o r a u t h e n t i c a t i o n before g e t t i n g courses
63 private function getFiles ( ) {
64 $stmt = $this−>con−>prepare ( "SELECT course , topic , f i lename FROM F i l e s " ) ;
65 $stmt−>execute ( ) ;
66 $stmt−>store_result ( ) ;
67 return $stmt−>get_result ( ) ;
68 }
69 }

Code-block 7: DbOperations

.4.4 DbConnect

1 <?php
2

3 class DbConnect {
4

5 public $con ;
6

7 function __construct ( )
8 {
9

10 }
11

12 function connect ( ) {



.4. PHP-scripts 108

13 include_once dirname ( __FILE__ ) . ' /Constans . php ' ;
14 $this−>con = new mysqli ( DB_HOST , DB_USER , DB_PASSWORD , DB_NAME ) ;
15

16 i f ( mysqli_connect_errno ( ) ) {
17 echo " f a i l e d to connect with database " . mysqli_connect_error ( )←↩

;
18 }
19

20 return $this−>con ;
21 }
22 }

Code-block 8: DbConnect

.4.5 Constants

1 <?php
2 def ine ( 'DB_NAME ' , ' android ' ) ;
3 def ine ( 'DB_USER ' , ' admin ' ) ;
4 def ine ( 'DB_PASSWORD ' , ' Smartcaching−2019 ' ) ;
5 def ine ( 'DB_HOST ' , ' 1 2 7 . 0 . 0 . 1 ' ) ;

Code-block 9: Constants used in PHP


	Front page
	English title page
	Contents
	1 Introduction
	1.1 Problem identification
	1.2 Initiating problem statement
	1.3 Problem examination
	1.3.1 Field research
	1.3.2 Brazilian phone plans

	1.4 International context
	1.4.1 Desk research

	1.5 International collaboration
	1.6 Problem statement

	2 Initial concept
	2.1 Concept explanation
	2.2 Existing solutions
	2.2.1 Smartphone application
	2.2.2 Subsidiary conclusion
	2.2.3 Green shoots project

	2.3 Conclusion

	3 Technical analysis
	3.1 Moodle scraper
	3.1.1 ETags
	3.1.2 File database
	3.1.3 Subsidiary conclusion

	3.2 Smartphone Application
	3.2.1 Operating system selection
	3.2.2 Android API level
	3.2.3 User identification
	3.2.4 Moodle courses
	3.2.5 Data logging
	3.2.6 Internet connectivity
	3.2.7 Communication
	3.2.8 Subsidiary conclusion

	3.3 Caching server
	3.3.1 Databases
	3.3.2 Smart caching
	3.3.3 Subsidiary conclusion


	4 Requirement specification
	4.1 Summary of conclusions
	4.2 Requirement specification
	4.2.1 Requirements moodle scraper
	4.2.2 Requirements caching server
	4.2.3 Requirements smartphone application

	4.3 Partial conclusion

	5 Implementation
	5.1 Programming philosophy
	5.1.1 Interfaces
	5.1.2 Code documentation

	5.2 Moodle scraper
	5.2.1 Scraping
	5.2.2 Downloading and storing files
	5.2.3 Subsidiary conclusion

	5.3 Database implementation
	5.3.1 User tables
	5.3.2 Course tables
	5.3.3 Subsidiary conclusion

	5.4 Caching
	5.4.1 Subsidiary conclusion

	5.5 App
	5.5.1 Constants
	5.5.2 Basic navigation
	5.5.3 User identification
	5.5.4 Shared Preferences
	5.5.5 Retrieving the file data
	5.5.6 Downloading and saving files
	5.5.7 Permissions
	5.5.8 Course facilitation
	5.5.9 Data collection
	5.5.10 Subsidiary conclusion

	5.6 Partial conclusion
	5.6.1 Requirements met


	6 Conclusion
	6.1 Future development

	7 Reflection
	7.1 International collaboration
	7.1.1 Compared with previous experience

	7.2 Internal collaboration
	7.3 Summary
	7.4 Reflection conclusion table

	Bibliography
	Appendices
	.1 Field research questions
	.2 Field research interview
	.3 Moodle scraper
	.3.1 Moodle scraper - main
	.3.2 Moodle scraper - files
	.3.3 Moodle scraper - courses

	.4 PHP-scripts
	.4.1 Register user
	.4.2 User login
	.4.3 DbOperations
	.4.4 DbConnect
	.4.5 Constants



