
Cherie Mai Caloyloy Hansen
20184306, ch18@student.aau.dk Final Portfolio

Secure Software Development
December 17, 2021. Pages: 21

Portfolio includes:

Secure Software Development,
Web Security,

Injection Attacks & Taint Analysis,
Secure C,

Home IoT Exercise

by Cherie Mai Caloyloy Hansen

December 17, 2021

Home IoT exercise has been made by Temporary Group A:

Mikkel Møller Andersen,
Mark Højer Hansen,

Zohra Amini,
Hasan Khan,

Nikolaos Pavlidis &
Cherie Mai Caloyloy Hansen.

1

Cherie Mai Caloyloy Hansen
20184306, ch18@student.aau.dk Final Portfolio

Secure Software Development
December 17, 2021. Pages: 21

1 Secure Software Development

1.1 Your understanding/definition of security

Within class, we have been presented to multiple definitions of security [9]. These
definitions are listed below.

1. “The ability of a system to satisfy its goals in the presence of an adversary.”

2. “Ensure the capability of a system to deliver correct service when under attack.”

3. “The ability of a system to ensure CIA.”

4. “Precautions to protect assets.”

5. “Computer security deals with the prevention and detection of unauthorised actions by
users of a computer system.”

All of the definitions are useful, but not all of them would be included in my definition of
security. The 1st definition mentions a system, where a visualisation of this matter can be
seen on figure 1 below.

Figure 1: Defining security, based on the class [9]

Figure 1 shows a system with an input and output in a context. What is “fluffy” about this
model, is that the system and the context are not defined, the goals and the adversary are
not shown in this figure either. Along with the 2nd and 4th definitions, the security is
depending on the context. I personally like the 3rd definition more, as the only definition
needed is the “system”, and CIA have defined goals already. The 5th definition is also good
in my opinion, as it further defines computer security.

2

Cherie Mai Caloyloy Hansen
20184306, ch18@student.aau.dk Final Portfolio

Secure Software Development
December 17, 2021. Pages: 21

1.2 Your take on risk-analysis/-management

The risk analysis/-management is useful for defining goals and security requirements when
implementing software. As the risks are defined before the implementation phase, the
software will make use of security-by-design. There are different types of risk analysis,
where one from my previous group projects are shown on figure 2 below.

Figure 2: Risk Analysis from my P5 report [3].

There are simpler versions of a risk analysis/-management table, where a 3x3 table shows
the difficulty on one axis and the impact on the other axis. The risk analysis on figure 2 is
much more detailed and shows both a risk assessment along side risk management. This
helped us both find requirements for our system and understand the risks that our system
were vulnerable to.

3

Cherie Mai Caloyloy Hansen
20184306, ch18@student.aau.dk Final Portfolio

Secure Software Development
December 17, 2021. Pages: 21

1.3 Your take on a secure software development (SSD) process

To go through an SSD process, I will focus on the Seven Touchpoints. This process is useful
for building security in an implementation. The book orders the touchpoints by
effectiveness [7], which will be further elaborated in the phase-description below.

1.3.1 The phases of your process

1. Code review: Use analysis tools to find details in the code and eliminate bugs [7][9].

2. Architectural review: Check the implementation so far; how is the system context?
Did the security goals cover all the threats [7][9]?

3. Penetration testing: Test and target the security of the code. This phase might find
vulnerabilities not found in the Architectural review [7].

4. Risk-based security testing: Similar to penetration testing, the risk-based testing are
testing the abuse cases (see below) and security goals [7][9].

5. Abuse case: Describing attack patterns to make requirements for the design of a
system [7][9].

6. Security requirements: Making requirements out of security goals. The requirements
are also found from the abuse cases (see above) [7][9].

7. Security operations: Going out to the network, understanding how the system
operates for other people [7][9].

1.3.2 The “why” of your process

The SSD process is useful when developing software in general, but for my case; my project
at Aalborg university. Many methods seen in the Building Security In book are similar to
ones I have been using before. For instance Use Cases (see next section), Risk analysis (see
previous section) and attack trees (mentioned at the comparison section). These methods
are/have been useful for many reasons. Why did we use this process? To visualize our risks.
To secure our software. To gain requirements that protects the system from attacks.

1.4 How to implement an SSD process into a specific project

As mentioned already, I have had multiple projects where I included the same theories or
similar. The seven touchpoints mentions abuse cases and security requirements; similar to
my P5 project, we made use cases and set software requirements based on this. Figure 3 is
just one use cases out of multiple, but highlights the difference of an authorized user, and
someone who is not registered, as they should be able to do different types of actions. The
(security) requirements were then defined, as listed:

4

Cherie Mai Caloyloy Hansen
20184306, ch18@student.aau.dk Final Portfolio

Secure Software Development
December 17, 2021. Pages: 21

1. The user must be able to log in.

2. The user must be able to log out.

3. A new user must be able to register an account.

4. The user must be able to register a lock.

5. The user must be able to verify their device as their trusted device.

Figure 3: Use Case example from my P5 report [3].

1.5 Comparison with other approaches

In class, we also discussed theories as STRIDE and attack trees. These are not “a process”
in the same way, where STRIDE can be seen as a type of security checklist and attack trees
can have different goals [9]. In our current project, we make use of attack trees as seen on
figure 4, with the goal of understanding/visualizing the risks and attacks of our
implementation. Attack trees can also define requirements and used for cost analysis - some
trees are made to understand which attacks have the biggest costs [13].

5

Cherie Mai Caloyloy Hansen
20184306, ch18@student.aau.dk Final Portfolio

Secure Software Development
December 17, 2021. Pages: 21

Figure 4: Attack tree which we made for the current project paper.

6

Cherie Mai Caloyloy Hansen
20184306, ch18@student.aau.dk Final Portfolio

Secure Software Development
December 17, 2021. Pages: 21

2 Web Security

2.1 Brief Description if OWASP Top 10 (with examples of
attacks)

2.1.1 Broken Access Control

If permission is restricted, for instance because of different levels of privileges, then
standard users might want to access data/web pages they initially are not allowed to enter.
The principle of least privilege is promoted to make sure users should not access
confidential data, which broken access control violates [14]. We do not want attackers and
intruders to modify our data.

2.1.2 Cryptographic Failures

Cryptography makes data unreadable, which makes it more secure against adversaries.
Failures in cryptography can be caused by old or weak algorithms, or no encryption at all
[15]. Weak encryption could be AES-ECB where the encrypted data is visible if multiple
blocks are similar as seen on figure 5 below.

Figure 5: Original Photo & ECB Encrypted Photo [24].

With cryptographic failures being on the 2nd spot within OWASP Top 10 shows the
vulnerability of sites without cryptography and importance of web protocols as HTTPS.

2.1.3 Injection

There are different types of injection, including SQL injection [16]. An SQL injection attack
is shown below on figure 6, which is an example from class where the attack is performed to
ignore further code to be executed after this inject.

’ OR 1=1 -- in the username input resulted in a login, without a username and password
combination.

7

Cherie Mai Caloyloy Hansen
20184306, ch18@student.aau.dk Final Portfolio

Secure Software Development
December 17, 2021. Pages: 21

Figure 6: SQL attack shown in class [8].

2.1.4 Insecure Design

When developing software, the developers should have security in mind. If they do not have
security in mind, they might not realize vulnerabilities in the system until an attack has
been performed. This part is kind of broad and thereby need a lot of resources to secure
fully [17]. The Building Security In book would make the developers consider the design
phrase; make some abuse cases, risk analysis, etc. to ensure the design is better prepared
for attacks.

2.1.5 Security Misconfiguration

Misconfiguration of software means error in the implementation or missing code to make it
run as intended. Error in code could occur by for example having unnecessary features
enables or installed. Missing security could be making the users change a password; if we
keep using default accounts and passwords, then it is easier to enter confidential data using
automated brute force methods [18].

2.1.6 Vulnerable and Outdated Components

As the title says, the components are not secure if they are vulnerable and outdated.
Outdated components are possibly not updated and thereby missing newer and more secure
software. If these components are out of date, they might not be supported either, making
the system more vulnerable [19].

2.1.7 Identification and Authentication Failures

When you have a login, you wish to be the only person to access this login - this is done
with help from authentication. With identification and authentication failures, an
adversary might be able to brute force their way into your account, especially with weak or
default login and password combinations. To prevent this vulnerability, multi-factor
authentication can be used [20].

8

Cherie Mai Caloyloy Hansen
20184306, ch18@student.aau.dk Final Portfolio

Secure Software Development
December 17, 2021. Pages: 21

2.1.8 Software and Data Integrity Failures

When developing software, the code should be secured in terms of integrity - Malicious code
should not be able to manipulate the software and tamper the data. The new updates,
third-party systems or repositories should not be applied unless it is trusted [21].

2.1.9 Security Logging and Monitoring Failures

Security logging can be used to document the activities in the system, meaning suspicious
activity could be discovered if this is applied - But logging also has to be done correctly, as
they might be vulnerable if stored locally [22]. Example of log placements could be failed
logins, where it can be discovered someone is brute-forcing a login.

2.1.10 Server-Side Request Forgery

Server-Side Request Forgery (SSRF) shows how the adversary can bypass firewalls, VPN,
etc. by sending crafted requests to the server. This attack can be done if there is no
validation on, for instance, user-supplied URLs - Validation is needed for better security
[23].

2.2 Brief description of ASVS

Application Security Verification Standard (ASVS) are used to set a standard for software,
and categorize requirements in levels to verify that a system is secure. These verification’s
levels are set in three different levels - the higher the level, the more secure [12].
Verification Level 1 is just the bare minimum, while Level 2 have more confidential data
that needs protection, etc. Level 3 are critical systems that needs the most security.

Based on a discussion in our group, we rated websites and other systems in different levels:

Table 1: ASVS Level discussion in the group
Level Examples
Level 1 “Vasketid.dk”. (Single player) games. Sport (bowling) websites.
Level 2 Small-medium enterprises. Streaming platforms (not payment aspect).

Public cloud storage. Organizations/companies looking for funding.
“dba.dk”. Hotels.

Level 3 Power Plants. Health Care systems. Private cloud storage. NemID.
Banks. Digital voting. Data centers with classified information. Air-
ports. Critical private inforation on Social Media. Police, firefigthers,
etc. Sponsored research centers. Stock exchange.

Off-levels Social Media; Both have public and private data - possibly multiple lev-
els?

9

Cherie Mai Caloyloy Hansen
20184306, ch18@student.aau.dk Final Portfolio

Secure Software Development
December 17, 2021. Pages: 21

2.3 Pick a few requirements and discuss the reasoning behind
them

Figure 7: Description of V2.5.2 [2].

We discussed V2.5.2 which is highlighted on figure 7 above. The discussion is summarized
in bullet points:

• Social engineering attacks can be used to bypass knowledge-based authentication
(KBA).

• The KBA can also be easily guessed if the adversary knows the target.

• Regarding the point above - Friends could easily target a user.

• Friends has for years been a trusted source for Facebook, where the friends were able
to recover your account if the password was forgotten [5] - this may show the friends
might enter your account easily if they are trusted.

Figure 8: Description of V2.8.5 [2].

V2.8.5 as shown on figure 8 above was discussed as well. The discussion is summarized:

10

Cherie Mai Caloyloy Hansen
20184306, ch18@student.aau.dk Final Portfolio

Secure Software Development
December 17, 2021. Pages: 21

• The logging will let the user know that someone is trying to re-use a OTP-token.

• The “one-time” authentication should also be for one-time use, even for the user itself.

• The user should be notified if someone is trying to use their login.

• If the user is notified of rejected time-based authentication, then it is possible that
someone at this point knows the username/password of the user.

Figure 9: Description of V1.2.1 & V2.5.4 [2].

V1.2.1 & V2.5.4 was merged in a discussion, as these are similar. The discussion is
summarized:

• We do not want people to access restricted data

• Even administrators should ask for permission

• We do not want data to run in the root

• Should there even be a root?

• Better applications are aware they should not run as root

11

Cherie Mai Caloyloy Hansen
20184306, ch18@student.aau.dk Final Portfolio

Secure Software Development
December 17, 2021. Pages: 21

3 Injection Attacks & Taint Analysis

3.1 A “reminder” / refresher on taint analysis

In class, we started to discussing taint analysis to help us solve problems like seen on
snippet 2 below. The problem in this example, is that the input is controlled by the user,
and thereby can be used to possibly catch cookies.

Snippet 1: PHP example from class

$cho i ce = $ REQUEST[‘ cho ice ’] ;
Echo ‘ your cho i c e was : ’ . \ $cho i ce ;

To make the example more secure, we should avoid having no input validation or
sanitization. To improve it, we should prevent user-controlled input, and use taint analysis
[10].

I will show my notes to describe the terminology, but forgive me for my drawing, writing
and how unclear it looks on figure 10 below. Beginning from the overview; a data flow
analysis is used to showcase the full taint analysis, we then we then see all possibilities in
the program, which in this case is illustrated with a control flow graph (CFG) which is
flow-diagram looking. As this data flow analysis has its program defined and a CFG
illustrated, data flow equations can be added; these are to explain the data in text format, I
personally compare it to how I view set theory in math.

Figure 10: My notes regarding the terminology

3.2 An example taint analysis of a small program

I will use exercise 13 from class, which is shown in figure 11 below. The taint analysis’
layout is based on the lecture notes [4].

12

Cherie Mai Caloyloy Hansen
20184306, ch18@student.aau.dk Final Portfolio

Secure Software Development
December 17, 2021. Pages: 21

Figure 11: Exercise 13.

Figure 12 shows the taint analysis specified for exercise 13, but to see a more general CFG,
ℓ : if(x) would be replaced with ℓ : if(e), y = 1 and y = 42 would be be replaced with s1
and s2 as seen on figure 10 in the section above.

Figure 12: Taint analysis of exercise 13

3.3 Reflections on the use and/or limitations of taint analysis
(e.g., wrt. injection attacks etc.)

In class, we went through a couple of PHP examples where it was mentioned injection
attacks could be performed, as the input is user controlled. As mentioned earlier, snippet 2

13

Cherie Mai Caloyloy Hansen
20184306, ch18@student.aau.dk Final Portfolio

Secure Software Development
December 17, 2021. Pages: 21

is vulnerable to injection attacks, including cookie stealing. General injection attack is
discussed in section 2.1.3, as I do not think it a definition is needed in this part of the
portfolio, but rather the Web Security part.

Snippet 2: PHP example from class

$cho i ce = $ REQUEST[‘ cho ice ’] ;
Echo ‘ your cho i c e was : ’ . \ $cho i ce ;

3.4 Notes, insights, and reflections on the generalised taint
analysis

My understanding of generalized taint analysis was affected by my knowledge of lattices
(see section below). In the lecture notes, the section Summary: Generalised Taint Analysis
have some notation I am not sure of, but the table of statements can be reflected.

Figure 13: Found on page 23 of the lecture notes [4]

From my understanding, these statements shown on figure 13 are how to interpret the
functionalities of the While language and CFGs which is used for this course to showcase
generalised taint analysis. These can be compared to how the CFGs are used in this course,
where the statement in each can be found on figure 14 - the corresponding IN(ℓ) and
OUT (ℓ) can be found in the table on figure 13.

Figure 14: Found on page 10 of the lecture notes [4]

14

Cherie Mai Caloyloy Hansen
20184306, ch18@student.aau.dk Final Portfolio

Secure Software Development
December 17, 2021. Pages: 21

Figure 14 does not show the IN(ℓ) and OUT (ℓ), but the IN(ℓ) would be placed at the
white dot (the input) above the statement, and OUT (ℓ) would be placed at the black dot
(the output) below the statement, and illustrated in figure 15 below.

Figure 15: Modified the first statement of figure 14 [4]

3.5 Notes on lattices

Based on my notes, I do not think we talked about lattices so much. I tried going to the
lecture notes on figure 16, which pointed me to a direction to understand lattices, but
ended up with a one line explanation on figure 17, which I do not think is enough for my
understanding. I can admit, I did not make use of lattices in class.

Figure 16: Found on page 19 of the lecture notes [4]

15

Cherie Mai Caloyloy Hansen
20184306, ch18@student.aau.dk Final Portfolio

Secure Software Development
December 17, 2021. Pages: 21

Figure 17: Lattices part in the lecture notes [4]

3.6 Notes on how to design a (taint-like) analysis

The lecture notes [4] mention that as long as the analysis is designed to possibly tell if data
may be tainted, it works.

What we have seen in class has been through visual graphs, mathematical equations and
code. Using only one of these methods should be sufficient to make a taint analysis, even if
all combined make a better result.

16

Cherie Mai Caloyloy Hansen
20184306, ch18@student.aau.dk Final Portfolio

Secure Software Development
December 17, 2021. Pages: 21

4 Secure C

4.1 How/why C is so difficult to use securely

From what we have seen in class, there are different parts that can make the code
(in)secure. During taint analysis class, we went through the problem of user input and how
they can be malicious. Different kinds of values can also be overwritten in the stack, which
causes problems when executing the code. C is different than other languages, for instance
because of its use of pointers, which will be discussed in this section.

4.1.1 The user input is not controlled

An example of code where the user input can be used in a malicious way can be seen in
snippet 3 below [11]. The length of FOO (see line 4) is not checked, the input does not have
a limit in characters, meaning it could be bigger than the size of buffer (see line 3). To use
it maliciously, could give an input that is bigger than buffer size.

1 i n t main (i n t argc , char ∗ argv []) {
2 char outbuf [5 1 2] ;
3 char bu f f e r [5 1 2] ;
4 s p r i n t f (bu f f e r , ‘ ‘FOO %s ’ ’ , argv [1]) ;
5 s p r i n t f (outbuf , bu f f e r) ;
6 }

Snippet 3: no length check on argv

Snippet 4 should be more secure, as there is a fixed 400 character limit that will be read
and written from argv to buffer, which is lower than the 512 character sized buffer (see
line 4).

1 i n t main (i n t argc , char ∗ argv []) {
2 char outbuf [5 1 2] ;
3 char bu f f e r [5 1 2] ;
4 s p r i n t f (bu f f e r , ‘ ‘FOO %.400 s ’ ’ , argv [1]) ;
5 s p r i n t f (outbuf , bu f f e r) ;
6 }

Snippet 4: now with a length of 400 characters

The input from the user might be limited, but it is still not secure; the user could add
characters as “%” which may affect how the code is executed. For instance the input
showcased in class, where it manipulates the value to change the input value to a higher
limit, breaking the 400 character limit:

%508d\xAA\xAA\xAA\xAA<nops><she l l c ode>

where AAAAAAAA is the shellcode address [11].

17

Cherie Mai Caloyloy Hansen
20184306, ch18@student.aau.dk Final Portfolio

Secure Software Development
December 17, 2021. Pages: 21

4.1.2 Values can be overwritten

When the title says that values can be overwritten, it includes different kinds of values;
buffers, integers, canaries (more on canaries in section 4.2.1). The issues regarding buffers is
commonly known as buffer overflow, which will be highlighted in the next example snippet
5 [11].

1 i n t main () {
2 long va l = 0x41414141 ;
3 char buf [2 0] ;
4 /∗ . . . ∗/
5 s can f (‘ ‘%24 s ’ ’ , &buf) ;
6 /∗ . . . ∗/
7 i f (va l = = 0xdeadbeef) {
8 s e t r e u i d (ge teu id () , ge t eu id ()) ;
9 system (‘ ‘ / bin / sh ’ ’) ;

10 }
11 e l s e {
12 p r i n t f (‘ ‘WAY OFF ! ! ! ! \ n ’ ’) ;
13 e x i t (1) ;
14 }
15 re turn 0 ;
16 }

Snippet 5: narnia0.c

The buffer overflow is an attack in the stack (memory address), where the buffer has a fixed
size of 20 characters (see line 3). The problem is when we scan 24 characters (see line 5),
where the buf will overwrite the val in the stack, which will result in filling your memory
with too much data [11]. Integer overflow is another example of overwriting values, which
will be further discussed in section 4.2.2.

4.1.3 How C is different from other languages

We had a discussion in class, where C was compared to languages like Java and Python -
How come these problems are not seen in Java or Python?

Pointers seemed to be the biggest problem we discussed, as they only appear in C. And
example of how the pointers makes a difference, is how they access the memory; in Java or
Python memory management is in use which will handle the memory automatically - in C,
we can go out of bounds of an array possibly reading or writing information we do not want
(or crash the program), where it would throw an ArrayIndexOutOfBoundsException if it
were to execute in Java.

18

Cherie Mai Caloyloy Hansen
20184306, ch18@student.aau.dk Final Portfolio

Secure Software Development
December 17, 2021. Pages: 21

4.2 A few of your favourite C vulnerabilities and ideas for
mitigating those

My favorite examples of vulnerabilities we discussed in class are buffer overflow and integer
overflow. There are multiple mitigations for these vulnerabilities, but I will only mention
what I found interesting from the discussion class.

4.2.1 Buffer overflow

Buffer overflow is already mentioned in section 4.1.2, where a snippet example was shown.
A way to mitigate buffer overflow is to use canaries. They are placed in into the stack to
protect the return address to be overwritten; it is checked on the return function and will
throw an error to indicate data has been overwritten [11]. It was mentioned in the lecture
the canary can be seen as “secret/random” information - adversaries would not be able to
know if canaries are in use.

4.2.2 Integer Overflow

The snippet is from the JPEG comment field in Netscape, which was shown in class [11].
Snippet 6 below was discussed with a specific example, where we set len to 1 (see line 3); if
the size is then len− 2 = −1, how will it be calculated in binary?

1 void getComment (unsigned i n t len , char ∗ s r c) {
2 unsigned i n t s i z e ;
3 s i z e = len − 2 ;
4 char ∗ comment = (char ∗) mal loc (s i z e + 1) ;
5 memcpy(comment , src , s i z e) ;
6 re turn ;
7 }

Snippet 6: Integer Overflow example

Binary numbers do not show negative numbers; 0001− 2 would have to do underflow where
it results in 1111 (which is equal to 15 i decimal numbers). Based on unsigned int (see
line 1), it did look like it was supposed to have non-negative numbers only. Mitigation for
this could be to make use of taint analysis.

19

Cherie Mai Caloyloy Hansen
20184306, ch18@student.aau.dk Final Portfolio

Secure Software Development
December 17, 2021. Pages: 21

5 Home IoT Exercise By Temporary Group A

The product we chose is LIXIL Satis Toilet. The Satis Toilet can be seen on figure 18 below.

Figure 18: Satis Toilet [1].

Product ID: identify product name, vendor, vulnerable version(s) of
software/firmware/hardware

The vendor is LIXIL Corporation, and the product is Satis version 1.0. The vulnerability
was found in 2013, newer versions and products have been developed since [1].

Placement/location/role in home: describe the room(s) in which the product
would typically be found; what it is (typically) used for; and the typical
user/buyer of the product

The toilet is placed in the bathroom, where it is usually placed towards a wall or into the
floor. The technologies of the toilet are controlled with an app, where the user can make it
flush, air dry, open/close lid, etc. [1].
The products website advertises towards relaxing homes, comfortable bathrooms, meaning
the users are regular people for home use [6].

Define and describe the target system the expected context of the system and
what security properties such a system should be expected to have.

The app for the Satis Toilet would be the system. The system will then get inputs from the
user who is making use of the app, where the output is the toilet’s functionalities which
depends on the action/input the user has chosen. The context for using this system is when
a user is in need of a toilet (and its functionalities).

Privacy is important as the product will be located in a user’s own home. The only device
who should be able to connect to the toilet is the user who brought the product, and users
who got permission by the product owner.
The system’s goal is to provide to the user with a dependable way of controlling the toilet.
The security properties focuses on availability. The password is hardcoded in the app,
where other devices with the app could manipulate the product. To make sure they can not

20

Cherie Mai Caloyloy Hansen
20184306, ch18@student.aau.dk Final Portfolio

Secure Software Development
December 17, 2021. Pages: 21

access the product, the password should be private and only known for users of the
product. The product should make the user change their password, to make sure no
intruders can pair with a default factory password. Confidentiality is less important for the
product, as the attacker will access user information based on the vulnerability found.

Security/threat model: what aspects of security should the product (have)
take(n) into account, what would you expect to be typical attacks/attackers
against the product

The security policy should have been that only the product owner (and guests) should be
able to control the toilet.

By using the STRIDE model, the typical attacks can be categorized. The typical attacks
would include tampering of the toilet functionalities and denial of service attack. An
adversary could keep the lid closed, so the user would not be able to use the toilet.

The vulnerability must described in “reasonable” detail, i.e., you do not need
to describe a detailed exploit (unless it’s short and fun), including how it
breaks security (what does security mean here)

The product consisted of the toilet and an app to control the toilet - the app is using
Bluetooth pairing and the hardcoded PIN “0000” to connect with the toilet. The attack on
the vulnerability was accomplished using the code below, where the PIN code is used to
start pairing the Bluetooth device. That actually means that every individual malicious or
not can access the toilet by only installing the app to their phones [1].

BluetoothDevice localBluetoothDevice =

BluetoothManager.getInstance().execPairing(paramString, ‘‘0000’’)

In this context the vulnerability compromises security in the sense that, if an adversary
exploits the aforementioned weakness, they can break the availability of the system and
thus disrupt the functionality of the service provided by the toilet.

Impact of a successful attack should be described in detail, i.e., What are the
consequences (and to whom) of a successful attack: is someones privacy
compromised, does it facilitate break-ins or monitoring etc.

The impact of a successful attack on the smart toilet would result in a denial of service, so
the system would be available for the user. Furthermore, an attacker could keep flushing
the toilet continuously, which would eventually lead to breach of and the build up of a large
water utility bill for the toilet’s owner.

21

Cherie Mai Caloyloy Hansen
20184306, ch18@student.aau.dk Final Portfolio

Secure Software Development
December 17, 2021. Pages: 21

Bibliography

[1] Trustwave Advisories. TWSL2013-020: Hard-Coded Bluetooth PIN Vulnerability in LIXIL
Satis Toilet. 2013. url: https://seclists.org/fulldisclosure/2013/Aug/18.

[2] The OWASP Foundation. “Application Security Verification Standard 4.0.2”. In:OWASP
(2020).

[3] Cherie Mai Caloyloy Hansen, Jonas Bukrinski Andersen, and Lukas Steffensen. “TriLock”.
Aalborg University of Copenhagen, 2020.

[4] René Rydhof Hansen. “Language-Based Security: A Problem Based Introduction”. Aal-
borg University of Copenhagen, 2020.

[5] Craig Johnson. Here’s how your friends could help you recover your Facebook account.
2018. url: https://www.wftv.com/consumer/clark-howard/heres-how-your-
friends-could-help-you-recover-your-facebook-account/700762337/.

[6] LIXIL. Satis. 2021. url: https://www.lixil.co.jp/lineup/toiletroom/satis/.

[7] Gary McGraw. Software Security: Building Security In. 2006. doi: 10.1109/ISSRE.
2006.43.

[8] Danny B. Poulsen. WebSecurity 04 - E21. Aalborg University, Copenhagen. 2021. url:
https://panopto.aau.dk/Panopto/Pages/Viewer.aspx?id=2d62808b-9656-49e2-

802a-adb800bef566.

[9] Danny B. Poulsen and René Rydhof Hansen. “Secure Software Development: Course
introduction + “Building Security In””. In: Aalborg University, 2021.

[10] Danny Bøgsted Poulsen and René Rydhof Hansen. “Injection Attacks and Taint Anal-
ysis: Advanced Software Security”. In: Aalborg University, 2021.

[11] Danny Bøgsted Poulsen and René Rydhof Hansen. “ISecure Software Development:
(In)Secure C”. In: Aalborg University, 2021.

[12] Danny Bøgsted Poulsen and René Rydhof Hansen. “Web Security”. In: Aalborg Uni-
versity, 2021.

[13] B. Schneier. Attack Trees. 2021. url: https : / / www . schneier . com / academic /

archives/1999/12/attack_trees.html.

[14] OWASP Top 10 team. A01:2021 – Broken Access Control. 2021. url: https://owasp.
org/Top10/A01_2021-Broken_Access_Control/.

[15] OWASP Top 10 team. A02:2021 – Cryptographic Failures. 2021. url: https://owasp.
org/Top10/A02_2021-Cryptographic_Failures/.

[16] OWASP Top 10 team. A03:2021 – Injection. 2021. url: https://owasp.org/Top10/
A03_2021-Injection/.

[17] OWASP Top 10 team. A04:2021 – Insecure Design. 2021. url: https://owasp.org/
Top10/A04_2021-Insecure_Design/.

22

https://seclists.org/fulldisclosure/2013/Aug/18
https://www.wftv.com/consumer/clark-howard/heres-how-your-friends-could-help-you-recover-your-facebook-account/700762337/
https://www.wftv.com/consumer/clark-howard/heres-how-your-friends-could-help-you-recover-your-facebook-account/700762337/
https://www.lixil.co.jp/lineup/toiletroom/satis/
https://doi.org/10.1109/ISSRE.2006.43
https://doi.org/10.1109/ISSRE.2006.43
https://panopto.aau.dk/Panopto/Pages/Viewer.aspx?id=2d62808b-9656-49e2-802a-adb800bef566
https://panopto.aau.dk/Panopto/Pages/Viewer.aspx?id=2d62808b-9656-49e2-802a-adb800bef566
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://owasp.org/Top10/A02_2021-Cryptographic_Failures/
https://owasp.org/Top10/A02_2021-Cryptographic_Failures/
https://owasp.org/Top10/A03_2021-Injection/
https://owasp.org/Top10/A03_2021-Injection/
https://owasp.org/Top10/A04_2021-Insecure_Design/
https://owasp.org/Top10/A04_2021-Insecure_Design/

Cherie Mai Caloyloy Hansen
20184306, ch18@student.aau.dk Final Portfolio

Secure Software Development
December 17, 2021. Pages: 21

[18] OWASP Top 10 team. A05:2021 – Security Misconfiguration. 2021. url: https://
owasp.org/Top10/A05_2021-Security_Misconfiguration/.

[19] OWASP Top 10 team. A06:2021 – Vulnerable and Outdated Components. 2021. url:
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/.

[20] OWASP Top 10 team. A07:2021 – Identification and Authentication Failures. 2021.
url: https://owasp.org/Top10/A07_2021-Identification_and_Authentication_
Failures/.

[21] OWASP Top 10 team. A08:2021 – Software and Data Integrity Failures. 2021. url:
https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/.

[22] OWASP Top 10 team. A09:2021 – Security Logging and Monitoring Failures. 2021.
url: https://owasp.org/Top10/A09_2021-Security_Logging_and_Monitoring_
Failures/.

[23] OWASP Top 10 team. A10:2021 – Server-Side Request Forgery (SSRF). 2021. url:
https://owasp.org/Top10/A10_2021- Server- Side_Request_Forgery_%5C%

28SSRF%5C%29/.

[24] Wikipedia. Block cipher mode of operation. 2021. url: https://en.wikipedia.org/
wiki/Block_cipher_mode_of_operation.

23

https://owasp.org/Top10/A05_2021-Security_Misconfiguration/
https://owasp.org/Top10/A05_2021-Security_Misconfiguration/
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/
https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/
https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/
https://owasp.org/Top10/A09_2021-Security_Logging_and_Monitoring_Failures/
https://owasp.org/Top10/A09_2021-Security_Logging_and_Monitoring_Failures/
https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%5C%28SSRF%5C%29/
https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%5C%28SSRF%5C%29/
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

	Secure Software Development
	Your understanding/definition of security
	Your take on risk-analysis/-management
	Your take on a secure software development (SSD) process
	The phases of your process
	The “why” of your process

	How to implement an SSD process into a specific project
	Comparison with other approaches

	Web Security
	Brief Description if OWASP Top 10 (with examples of attacks)
	Broken Access Control
	Cryptographic Failures
	Injection
	Insecure Design
	Security Misconfiguration
	Vulnerable and Outdated Components
	Identification and Authentication Failures
	Software and Data Integrity Failures
	Security Logging and Monitoring Failures
	Server-Side Request Forgery

	Brief description of ASVS
	Pick a few requirements and discuss the reasoning behind them

	Injection Attacks & Taint Analysis
	A ``reminder'' / refresher on taint analysis
	An example taint analysis of a small program
	Reflections on the use and/or limitations of taint analysis (e.g., wrt. injection attacks etc.)
	Notes, insights, and reflections on the generalised taint analysis
	Notes on lattices
	Notes on how to design a (taint-like) analysis

	Secure C
	How/why C is so difficult to use securely
	The user input is not controlled
	Values can be overwritten
	How C is different from other languages

	A few of your favourite C vulnerabilities and ideas for mitigating those
	Buffer overflow
	Integer Overflow

	Home IoT Exercise By Temporary Group A

